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Abstract. We describe a strategy for rigorous arbitrary-precision evaluation of Legendre poly-
nomials on the unit interval and its application in the generation of Gauss-Legendre quadrature rules.
Our focus is on making the evaluation practical for a wide range of realistic parameters, correspond-
ing to the requirements of numerical integration to an accuracy of about 100 to 100 000 bits. Our
algorithm combines the summation by rectangular splitting of several types of expansions in terms of
hypergeometric series with a fixed-point implementation of Bonnet’s three-term recurrence relation.
We then compute rigorous enclosures of the Gauss-Legendre nodes and weights using the interval
Newton method. We provide rigorous error bounds for all steps of the algorithm. The approach is
validated by an implementation in the Arb library, which achieves order-of-magnitude speedups over
previous code for computing Gauss-Legendre rules with simultaneous high degree and precision.
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1. Introduction. The Legendre polynomials Pn(x) are the sequence of orthog-
onal polynomials with respect to the unit weight on the interval (−1, 1), normalized
so that Pn(1) = 1. Like other classical orthogonal polynomials, Legendre polynomials
satisfy a three-term recurrence, in this case the relation

(1) (n+ 1)Pn+1(x)− (2n+ 1)xPn(x) + nPn−1(x) = 0,

also known as Bonnet’s formula, and a second order differential equation, here

(2) (1− x2)P ′′n (x)− 2xP ′n(x) + n(n+ 1)Pn(x) = 0.

The definition implies that Pn has n roots all located in (−1, 1). Perhaps the most
important application of Legendre polynomials is the Gauss-Legendre quadrature rule

(3)
∫ 1

−1
f(x)dx ≈

n−1∑
i=0

wif(xi), wi =
2

(1− x2i )[P ′n(xi)]2
,

where the nodes xi are the roots of Pn. The quantity wi is called the weight associated
with the node xi.

For some applications in computer algebra, number theory, mathematical physics,
and experimental mathematics, it is necessary to compute integrals to an accuracy
of hundreds of digits, and occasionally even tens of thousands of digits [1]. It is well
known that the Gauss-Legendre formula (3) is nearly optimal among all quadrature
rules for integrands that are well-approximated by polynomials, in particular for an-
alytic f without singularities close to the path of integration [17, 27]. As a special
case, the n-point rule (3) is exact when f is a polynomial of degree at most 2n − 1.
In general, the error in (3) can be bounded in terms of supx∈(−1,1) |f (2n)(x)|, or if
f is analytic on a domain D containing (−1, 1), in terms of supz∈D |f(z)| and the
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distance from the boundary of D to (−1, 1). For integration of smooth functions
without endpoint singularities, Gauss-Legendre quadrature achieves an accuracy of p
bits with n = O(p) evaluation points. Even when the conditions are not ideal for
using (3) directly, rapid convergence is often possible by combining (3) with adaptive
subdivision of the integration path [22].

The Gauss-Legendre scheme has the drawback that the quadrature nodes and
weights are somewhat inconvenient to compute. Indeed, Pn becomes highly oscilla-
tory for large n and hence presents difficulties for naive root-finding and polynomial
evaluation methods. The classical Golub-Welsch algorithm avoids accuracy problems
by formulating the task of computing the nodes as finding the eigenvalues of a tridi-
agonal matrix [9], but this approach is still too slow to be practical for large n.

In the last decade, several authors have contributed to the development of asymp-
totic methods that permit computing any individual node and weight for arbitrarily
large n in O(1) time, culminating in the 2014 work by Bogaert [4, 11, 3]. For a review
of this progress, see Townsend [26]. Of course, the “O(1)” bound assumes that a
fixed level of precision is used. In the prevailing literature this generally means 53-bit
IEEE 754 floating-point arithmetic. As mentioned earlier, certain applications require
considering p ∼ n where p is the precision in bits, which potentially can be in the
thousands. In addition, the available O(1) implementations rely in part on heuristic
error estimates without rigorously proved bounds.

The literature on arbitrary precision or rigorous evaluation is comparatively lim-
ited. Petras [21] gave explicit bounds for the error |x(i)k − xk| when the roots xk of
the Legendre polynomial Pn are approximated using Newton iteration

(4) x
(i+1)
k = x

(i)
k −

Pn(x
(i)
k )

P ′n(x
(i)
k )

provided that the initial values x(0)k are computed by a certain asymptotic formula.
However, Petras did not address the numerical evaluation of Pn(x). Fousse [8] dis-
cussed the rigorous implementation of Gauss-Legendre quadrature using generic poly-
nomial root isolation methods together with interval Newton iteration for root refine-
ment, but did not study fast methods for large n. Code for high-precision Gauss-
Legendre quadrature rules can also be found in packages such as Pari/GP [25] and
ARPREC [2], but without error analysis and without special techniques for large n.

If we assume that the precision p varies, then it is clear that any node and weight
can be computed to p-bit accuracy in Õ(np) time1, by performing O(log p) Newton
iterations (4) from an appropriate initial value. As a consequence, the full set of nodes
and weights for the degree-n quadrature rule can be computed in Õ(n2p) time. For
numerical integration of analytic functions where we typically have p ∼ n, a better
(indeed, optimal) estimate than the classical Õ(n3) bound is possible.

Theorem 1. If p ∼ n, then the Gauss-Legendre nodes and weights of degree n
can be computed to p-bit accuracy in Õ(n2) (equivalently, Õ(p2)) bit operations.

Proof sketch. Using the formulas in [21], we can compute good initial values for
Newton iteration in Õ(n) bit operations. The Newton iteration can be performed
for all roots simultaneously using fast multipoint evaluation, which costs Õ(np) bit
operations. Fast multipoint evaluation is numerically unstable and generically loses

1We write Õ(x) for O(x log(x)O(1)).
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O(n) bits of accuracy, but we can compensate for this loss by using O(n) guard
bits [16]. Since p ∼ n by assumption, this does not change the complexity bound.

Completing the details of the proof is a technical exercise. Despite being ele-
gant in theory, the algorithm behind Theorem 1 has high overhead in practice, in
large part due to the need to work with greatly increased precision. Working with
expanded polynomials and processing all roots simultaneously also results in high
memory usage and makes parallelization difficult. See subsection 4.4 below for an
alternative approach–also unlikely to be practical except for extremely large p—that
leads to a similar complexity bound. We can achieve a slightly worse but still sub-
cubic complexity of Õ(n5/2) by employing fast multipoint evaluation in a completely
different way to compute Pn values in isolation, but unfortunately that algorithm also
has high overhead [12].

In this work, we study fast and practical computation for variable n and pre-
cision p with rigorous error bounds. Our main contribution is to give a complete
evaluation strategy for Legendre polynomials on [−1, 1] in ball arithmetic [28, 15].
Computing the Legendre polynomial roots, then, is a relatively simple application of
the results in [21] together with the interval Newton method [18].

Our algorithm for evaluating Legendre polynomials switches between different
methods. In section 3, we prove practical error bounds for the three-term recur-
rence (1), which can be efficiently implemented in fixed-point arithmetic. This method
is ideal for n and p up to a few hundred. For larger n or p, we use a fast method for
evaluation of hypergeometric series. Section 4 discusses the hypergeometric series ex-
pansions that are preferable for different inputs and precision (including a well-known
asymptotic expansion for large n), and their efficient evaluation. In section 5, we
propose a strategy to select the best formula for any combination of n, p, x.

Section 6 presents benchmark results that compare the performance of our algo-
rithm to some previous implementations as well as the asymptotically fast algorithm
in Theorem 1.

For generating Gauss-Legendre quadrature rules with n ∼ p, our algorithm has
an asymptotic complexity of Õ(n3) like classical methods. However, our algorithm
has much lower overhead, and for parameters p, n < 105 which are most relevant
to applications, the observed running time is effectively subcubic. Furthermore, if
p = O(1), the complexity reduces to Õ(n) as in the machine-precision implementations
by Bogaert and others.

Finally, section 7 reviews the viability of Gauss-Legendre quadrature compared
to other methods for extremely high precision integration.

Our code for evaluating Legendre polynomials and computing Gauss-Legendre
nodes and weights is freely available as part of the Arb library [15].

2. General strategy. We work in the framework on midpoint-radius interval
arithmetic, also called ball arithmetic. In general, given an integer n and a ball
x = [m ± r] = [m − r,m + r], we want to evaluate Pn(x) at x, yielding an enclosure
y = [m′ ± r′] such that Pn(ξ) ∈ y holds for all ξ ∈ x.

We restrict our attention to real x ∈ [−1, 1], which is the most interesting part of
the domain for applications. Since Pn(−x) = (−1)nPn(x), we can further restrict to
0 ≤ x ≤ 1. Some authors suggest working with Pn(cos(θ)) instead of Pn(x) directly
to improve numerical stability for x close to 1, but this is not necessary in arbitrary-
precision arithmetic since a slight precision increase (of the order of O(log n) bits)
works as well.

We note that, for rigorous evaluation of Pn(z) with complex z as well as Legendre
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functions of non-integer order n, generic methods for the hypergeometric 2F1 function
are applicable if n is not extremely large; see [14]. Real |x| > 1 can also be handled
easily using naive methods.

In view of the use of Newton’s method to compute the roots, we also need to
evaluate the derivative P ′n(x), typically at the same time as Pn(x) itself. A simple
option is to deduce P ′n(x) from Pn(x) and Pn−1(x) using

(5) (x2 − 1)P ′n(x) = n
(
xPn(x)− Pn−1(x)

)
.

When x is close to 1, though, this formula involves a cancellation of about |log2(1−x)|
bits in the subtraction, followed by a division by x2−1. Therefore, a direct evaluation
of P ′n(x) may be preferable to reduce the working precision.

Our evaluation algorithms rely on ball arithmetic internally to propagate the error
bounds up to the final result. Since some methods would produce unsatisfactorily
large enclosures when executed on input balls x = [m±r] of radius r > 0, we evaluate
Pn(m) (with higher internal precision if necessary) and use a first-order bound

max
ξ∈x
|Pn(ξ)− Pn(m)| ≤ rmax

ξ∈x
|P ′n(ξ)|

to separately bound the propagated error. Similarly, we use a bound for P ′′n to com-
pute a reasonably tight enclosure for P ′n([m ± r]). Suitable bounds are given in
Proposition 3 below.

Lemma 2. Denote by [zn]f(z) the coefficient of index n in a power series f(z),
and write f(z) �z f̂(z) if |[zn]f(z)| ≤ [zn]f̂(z) for all n. If f , g, f̂ , ĝ are such that
f(z) �z f̂(z) and g(z) �z ĝ(z), then we also have

∫ z
0
f �z

∫ z
0
f̂ and f(z)g(z) �z

f̂(z)ĝ(z).

Proposition 3. The following bounds hold for −1 ≤ x ≤ 1:

|P ′n(x)| ≤ min

(
23/2√
π

√
n

(1− x2)3/4
,
n(n+ 1)

2

)
,(6)

|P ′′n (x)| ≤ min

(
25/2√
π

n3/2

(1− x2)5/4
,

(n− 1)n(n+ 1)(n+ 2)

8

)
.(7)

Proof. It is classical that Legendre polynomials are given by the generating series

(8) F (x, z) =

∞∑
n=0

Pn(x)zn =
1√

1− 2xz + z2
.

Differentiation with respect to x yields

∞∑
n=0

P ′n(x)zn =
zF (x, z)

1− 2xz + z2
,

∞∑
n=0

P ′′n (x)zn =
3z2F (x, z)

(1− 2xz + z2)2
.

Set θ = arccosx, so that the roots of 1− 2xz + z2 are e±iθ. Then, in the notation of
Lemma 2, we have the bound

1

1− 2xz + z2
=

1

2i sin θ

(
1

z − eiθ
− 1

z − e−iθ

)
=

∞∑
n=0

sin
(
(n+ 1)θ

)
sin(θ)

zn �z
sin(θ)−1

1− z
.
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In addition, Bernstein’s inequality for the Legendre polynomials (see, e.g., [6]) com-
bined with the logarithmic convexity of the Gamma function yields

|Pn(x)| ≤
√

2√
π

1√
sin θ

1√
n+ 1/2

≤
√

2√
π

1√
sin θ

Γ(n+ 1/2)

Γ(n+ 1)
,

and hence

F (x, z)�z

√
2√

sin θ

∞∑
n=0

1√
π

Γ(n+ 1/2)

Γ(n+ 1)
zn =

√
2√

sin θ

1√
1− z

.

By Lemma 2, these bounds combine into

dF

dx
�z

√
2

sin(θ)3/2
1

(1− z)3/2
,

d2F

dx2
�z

√
2

sin(θ)5/2
3z2

(1− z)5/2
.

Since [zn](1 − z)−k−1/2 = Γ(n + 1/2)/(Γ(k + 1/2)Γ(n − k + 1)) and using again the
logarithmic convexity of Γ, we conclude that

|P ′n(x)| ≤
√

2

sin(θ)3/2
2√
π

Γ(n+ 1/2)

Γ(n)
≤ 23/2√

π

√
n

sin(θ)3/2
, |P ′′n (x)| ≤ 25/2√

π

n3/2

(1− x2)5/4
.

The result follows since all derivatives of Legendre polynomials reach their maximum
at x = 1 (or by using the bounds (z−e±iθ)−1, F (x, z)�z (1−z)−1 and Lemma 2).

Remark 4. By the same reasoning, the inequality

|P (k)
n (x)| ≤ 2k+1/2

√
π

nk−1/2

(1− x2)(2n+1)/4

actually holds for all k. Unfortunately, it seems to overestimate |P (k)| by a factor
about 2k.

Based on these reductions, we assume from now on that x is a floating-point
number with 0 ≤ x ≤ 1. Our main algorithm for evaluating Pn at x combines the
following methods:

• the iterative computation of Pn(x) via the three-term recurrence (1),
• an asymptotic expansion of Pn(x) as n→∞,
• the usual expanded expression of Pn in the monomial basis,
• the analogous terminating expansion at 1.

All three expansions can be written as hypergeometric series, i.e., sums of the form∑
k ckξ

k where ck/ck−1 is a rational function of k.
The constraints and heuristics used to select between these methods are described

in detail below. Roughly speaking, the three-term recurrence is used for small index n
and precision p, when x is not too close to 1; the asymptotic series when n is large
enough, again with x not too close to 1; the expansion at 0 for large p unless x is close
to 1; and finally the expansion at 1 in the remaining cases when x is close to 1.

At p-bit precision, it is sufficient to choose algorithms and internal evaluation
parameters to target an absolute error of about 2−p, or more precisely 2−p−O(logn)

for a relative error of about 2−p measured with respect to monotone envelopes for
Pn(x) and P ′n(x) as in [4]. The relative error of a computed ball for Pn(x) where x is
near a zero xk can be arbitrarily large, but the relative error of P ′n(x) near xk will be
small, which is sufficient for Newton iteration. Since the output consists of a ball, we
also have the option of catching a result with large relative error and repeating the
evaluation with a higher precision as needed.



6 FREDRIK JOHANSSON, MARC MEZZAROBBA

3. Basecase recurrence. For small n, a straightforward way to compute Pn(x)
is to apply the three-term recurrence (1), starting from P0(x) = 1 and P1(x) = x.
Computing Pn(x) by this method takes about (M(t) +O(t))n bit operations, where
t is the working precision andM(t) denotes the cost of t-bit multiplication. It is thus
attractive for small n and t, especially when both Pn(x) and P ′n(x) are needed, since
we can get Pn−1(x) at no additional cost.

Fix x ∈ [−1, 1], and let pn = Pn(x). Bonnet’s formula (1) gives

(9) pn+1 =
1

n+ 1

(
(2n+ 1)xpn − npn−1

)
, n ≥ 0.

In a direct implementation of this recurrence in ball arithmetic, the width of the en-
closures would roughly double at every iteration, requiring to increase the internal
working precision by O(n) bits. We avoid this issue by performing a pen-and-paper
round-off error analysis of the evaluation that yields a less pessimistic bound on the
accumulated error. Additionally, the static error bound allows us to implement the re-
currence in fixed-point arithmetic, avoiding the overhead of floating-point and interval
operations.

Suppose x = x̂ 2−t with x̂ ∈ Z is a given fixed-point number. Let duc denote the
integer truncation of a real number u (any other rounding function would do). The
integer sequence (p̂n) defined by

(10) p̂0 = 2t, p̂1 = x̂, p̂n+1 =

⌈
1

n+ 1

(
(2n+ 1)dx̂p̂n2−tc − np̂n−1

)⌋
is easy to compute using only integer arithmetic, and p̂n 2−t is an approximation
of pn. Algorithm 1 provides a complete C implementation using GMP [10]. As
a small optimization, we delay the division by n + 1 until we have accumulated a
denominator of the size of a machine word.

To bound the difference |p̂n 2−t − pn|, we analyze the effect on the result of a
small perturbation in each iteration of (9). The bound is based on a classical linearity
argument (compare, e.g., [29]) combined with majorant series techniques.

Proposition 5. Suppose that a sequence (p̃n)n≥−1 satisfies p̃0 = 1 and

(11) p̃n+1 =
1

n+ 1

(
(2n+ 1)xp̃n − np̃n−1

)
+ εn, n ≥ 0.

for arbitrary real numbers εn with |εn| ≤ ε̄ for all n. Then we have

|p̃n − Pn(x)| ≤ (n+ 1)(n+ 2)

4
ε̄

for all n ≥ 0.

Proof. Let δn = p̃n − pn and ηn = (n+ 1)εn. Subtracting (9) from (11) gives

(12) (n+ 1)δn+1 = (2n+ 1)xδn − nδn−1 + ηn,

with δ0 = 0. Consider the formal generating series δ(z) =
∑
n≥0 δnz

n and η(z) =∑
n≥0 ηnz

n. Noting that (12) holds for all n ∈ Z if the sequences (δn) and (ηn) are
extended by 0 for n < 0 and using the relations

∞∑
n=−∞

fn−1z
n = z

∞∑
n=−∞

fnz
n,

∞∑
n=−∞

nfnz
n = z

d

dz

∞∑
n=−∞

fnz
n,
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Algorithm 1 Evaluation of Legendre polynomials in GMP fixed-point arithmetic
Input: An integer x and t ≥ 0 such that |2−tx| ≤ 1, and n ≥ 1
Output: p, q such that |2−tp−Pn−1(2−tx)|, |2−tq−Pn(2−tx)| ≤ (0.75 (n+1)(n+2)+1) 2−t

void legendre(mpz_t p, mpz_t q, int n, const mpz_t x, int t) {
mpz_t tmp; int k; mpz_init(tmp);
mp_limb_t denlo, den = 1;
mpz_set_ui(p, 1);
mpz_mul_2exp(p, p, t);
mpz_set(q, x);
for (k = 1; k < n; k++) {

mpz_mul(tmp, q, x);
mpz_tdiv_q_2exp(tmp, tmp, t);
mpz_mul_si(p, p, -k*k);
mpz_addmul_ui(p, tmp, 2*k+1);
mpz_swap(p, q);
if (mpn_mul_1(&denlo, &den, 1, k+1)) {

mpz_tdiv_q_ui(p, p, den);
mpz_tdiv_q_ui(q, q, den);
den = k+1;

} else den = denlo;
}
mpz_tdiv_q_ui(p, p, den/n);
mpz_tdiv_q_ui(q, q, den);
mpz_clear(tmp);

}

we see that (12) translates into

(1− 2xz + z2)z
d

dz
δ(z) = z(x− z)δ(z) + zη(z).

The solution of this differential equation with δ(0) = 0 reads, cf. (8),

δ(z) = p(z)

∫ z

0

η(w) p(w) dw, p(z) =

∞∑
n=0

pnz
n = F (x, z) =

1√
1− 2xz + z2

.

This is an exact expression of the “global” error δ in terms of the “local” errors εn.
Since |pn| = |Pn(x)| ≤ 1 and |ηn| ≤ (n+ 1)ε̄, it follows by Lemma 2 that

|δn| =
∣∣∣∣[zn]

(
p(z)

∫ z

0

η(w) p(w) dw

)∣∣∣∣ ≤ [zn]

(
1

1− z

∫ z

0

ε̄

(1− w)2
1

1− w
dw

)
and therefore

|δn| ≤ [zn]

(
1

2

ε̄

(1− z)3

)
=

(n+ 1)(n+ 2)

4
ε̄.

Corollary 6. Suppose that x = x̂ 2−t for some t ≥ 0 and x̂ ∈ Z. The sequence
(p̂n)n≥0 defined by (10) satisfies

(13) |p̂n2−t − pn| ≤ 0.75 (n+ 1)(n+ 1) 2−t, n ≥ 0.

Furthermore, the quantities p, q returned by Algorithm 1 are such that

(14) |p− 2tPn−1(x)|, |q − 2tPn(x)| ≤ 0.75(n+ 1)(n+ 2) + 1.
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Proof. We can write

p̂n+1 =
1

n+ 1

(
(2n+ 1)(x̂ p̂n 2−t + αn)− n p̂n−1

)
+ βn

for some αn, βn of absolute value at most one, and hence

p̂n+1 =
1

n+ 1

(
(2n+ 1) x̂ p̂n 2−t − n p̂n−1

)
+ εn, εn =

2n+ 1

n+ 1
αn + βn.

where |εn| ≤ 3. Proposition 5 applied to p̃n = p̂n 2−t then provides the bound (13).
Turning to Algorithm 1, let p0, q0, d0 denote the values of the variables p, q,

den before the loop, and pk, qk, dk their values at the end of iteration k. Consider
the sequence p̃k = 2−tqk−1/dk−1, k ≥ 1, extended by p̃0 = 1 and an arbitrary p̃−1.
For all k ≥ 1, depending whether the conditional branch is taken, we have one of the
systems of equations

pk = qk−1, qk = (2k + 1)dx̂qk−12−tc − k2pk−1, dk = (k + 1) dk−1(15)

pk =

⌈
qk−1

dk−1

⌋
, qk =

⌈
(2k + 1)dx̂qk−12−tc − k2pk−1

dk−1

⌋
, dk = k + 1.(16)

In both cases, we can write

pk

dk
=

qk−1

(k + 1)dk−1
+

αk
k + 1

,
qk

dk
=

(2k + 1)(xqk−1 + βk)− k2pk−1
(k + 1)dk−1

+
γk
k + 1

with |αk|, |βk|, |γk| ≤ 1. The first equation implies 2−tk pk−1/dk−1 = p̃k−1 + αk−12−t

for k ≥ 2. Since the latter equality also holds for k = 1 with α0 = 0, we can substitute
it in the second equation, yielding

p̃k+1 =
(2k + 1)xp̃k − kp̃k−1

k + 1
+ 2−t

(
−kαk−1
k + 1

+
(2k + 1)βk
(k + 1)dk−1

+
γk
k + 1

)
.

This relation holds for k ≥ 1, and we extend it to k = 0 by setting β0 = γ0 = 0. Thus,
p̃k also satisfies (11) with |εn| ≤ 3 · 2−t, and Proposition 5 applies. The final values
of q and p are respectively d2tp̃nc and dnpn−1/dn−1c = d2tp̃n−1 + αn−1c, whence the
bound (14).

We do not use asymptotically faster evaluation techniques for large n in combi-
nation with this recurrence, since the series expansions to be presented next perform
very well in this case.

4. Series expansions. For large n or p, we employ series expansions of Pn(x)
with respect to either n or x rather than the algorithm from the previous section.
The coefficients of the series are also computed by recurrence, but fewer than n terms
will typically be required. Additionally, the expansions are of a form suitable for fast
evaluation by rectangular splitting. Let us first review the various series expansions
that we are using (an asymptotic expansion as n → ∞, series expansions at x = 0
and x = 1), and then discuss their efficient evaluation.

4.1. Asymptotic series. For fixed |x| < 1 or equivalently x = cos(θ) with
0 < θ < π, an asymptotic expansion for Pn(x) as n→∞ can be given as [4, Eq. 3.4]

(17) Pn(cos(θ)) =

(
2

π sin(θ)

)1/2 K−1∑
k=0

Cn,k
cos(αn,k(θ))

sink(θ)
+ ξn,K(θ)
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where

(18) Cn,k =
[Γ(k + 1/2)]2Γ(n+ 1)

π2kΓ(n+ k + 3/2)Γ(k + 1)
,

(19) αn,k(θ) = (n+ k + 1/2)θ − (k + 1/2)π/2,

and the error term satisfies

(20) |ξn,K(θ)| < 2

(
2

π sin(θ)

)1/2
Cn,K

sinK(θ)
.

The coefficients Cn,k are a hypergeometric sequence with

(21)
Cn,k
Cn,k−1

=
(2k − 1)2

k(2n+ 2k + 1)
, Cn,0 =

1√
π

4n

(n+ 1
2 )
(
2n
n

) .
To evaluate the error bound, we can use the following inequality for n, k ≥ 1:

(22) Cn,k ≤
1

πn1/2
k!n!

2k(n+ k)!
≤ 1

πn1/2
k!

(2n)k
.

The asymptotic expansion is in fact a convergent series when 2 sin(θ) > 1, which
allows evaluating Pn(x) to unbounded accuracy for fixed n when 1

6π < θ < 5
6π.

The particular form (17) must be used for this purpose; there is a slightly different
version of the expansion which is asymptotic to Pn(x) (for fixed K when n→∞) but
paradoxically converges to 2Pn(x) (for fixed n when K →∞); see [19] and [20].

We can restate (17) as a hypergeometric series by working with complex numbers.
Letting ω = 1− (x/y)i, with x = cos(θ) and y = sin(θ) as usual, we have

(23) Pn(x) =
√
πy Re

[
(1− i)(x+ yi)n+1/2

K−1∑
k=0

Cn,kω
k

]
+ ξn,K(θ).

This eliminates the explicit trigonometric functions and permits using Algorithm 2
below to evaluate the series.

The evaluation of (23) in ball arithmetic is numerically stable, and we therefore
only need to add a few guard bits to the working precision.

4.2. Expansion at zero. If n = 2d is even, the expansion of Pn(x) in the
monomial basis reads

P2d(x) = (−1)d
d∑
k=0

(−1)k

2n

(
n

d− k

)(
n+ 2k

n

)
x2k

=
(−1)d

22d

(
2d

d

) d∑
k=0

A−1(d, k)(−x2)k,

(24)

and if n = 2d+ 1 is odd, we have

P2d+1(x) = (−1)dx

d∑
k=0

(−1)k

2n

(
n

d− k

)(
n+ 2k + 1

n

)
x2k

=
(−1)d(d+ 1)

22d+1

(
2d+ 2

d+ 1

)
x

d∑
k=0

A+1(d, k)(−x2)k

(25)
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where the hypergeometric sequences A±1 can be defined by A±1(d, 0) = 1 and

(26)
Aσ(d, k)

Aσ(d, k − 1)
=

(d− k + 1)(2d+ 2k + σ)

k(2k + σ)
, σ ∈ {−1,+1}.

At very high precision, we evaluate the full polynomials, where (24) and (25) have
the advantage compared to other expansions of requiring only n/2 terms due to the
odd-even form. At lower precision p, the high order terms will be smaller than 2−p

when |x| is small, and we can truncate the series accordingly and add a bound for
the omitted terms to the radius of the computed ball. When the series are truncated
after the k = K − 1 term (for any K < d + 1), comparison with a geometric series
shows that the error is bounded by the first omitted term times a simple factor.

Proposition 7. For σ ∈ {−1,+1}, the error when truncating the bottom sum in
(24) or (25) (with prefactors removed) after the k = K − 1 term satisfies

(27)

∣∣∣∣∣
d∑

k=K

Aσ(d, k)(−x2)k

∣∣∣∣∣ ≤ Aσ(d,K)|x|2K

1− α
, α = |x|2 (d−K + 1)(2d+ 2K + σ)

K(2K + σ)

provided that α < 1.

For bounding Aσ(d,K) in this expression, and for selecting the appropriate trun-
cation point K, we use the binomial closed forms together with the remarks in sub-
section 4.5.

The alternating series (24) and (25) may suffer from significant cancellation, which
requires use of increased precision. We can estimate the magnitude by noting that no
cancellation occurs if x is an imaginary number. Solving the majorizing recurrence
fn = 2|z|fn−1 + fn−2 with f0 = 1, f1 = |z| shows that

|Pn(z)| ≤ |Pn(i|z|)| ≤
(
|z|+

√
1 + |z|2

)n
.

Therefore, the possible cancellation assuming that |Pn(x)| ≈ 1 is about

(28) pA = n log2

(
|x|+

√
1 + |x|2

)
bits (which is at most (log2(1 +

√
2))n ≈ 1.27156n), so using ball arithmetic with

about p+ pA bits of working precision for the series evaluation gives p-bit accuracy.

4.3. Expansion at one. Expanding at x = 1 yields

(29) Pn(x) =

n∑
k=0

cn,ku
k, cn,k =

(
n

k

)(
n+ k

k

)
where u = (x − 1)/2. The coefficients cn,k are hypergeometric with initial value
cn,0 = 1 and term ratio

(30)
cn,k
cn,k−1

=
(n− k + 1)(n+ k)

k2
.

As in the previous section, we can truncate (29) and bound the error by comparison
with a geometric series.
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Proposition 8. The error when truncating (29) after the k = K−1 term satisfies

(31)

∣∣∣∣∣
n∑

k=K

cn,ku
k

∣∣∣∣∣ ≤ cn,K |u|K

1− α
, α = |u| (n−K)(n+K + 1)

(K + 1)2

provided that α < 1.

For u ≥ 0, (29) does not suffer from cancellation. For u < 0, we can estimate the
amount of cancellation from the magnitude of Pn(x′) where |u| = (x′ − 1)/2. For not
too large x′ ≥ 1, a very good approximation is

Pn(x′) ≤ 2

∞∑
k=0

n2k

k!2
|u|k = 2 I0(2n

√
|u|) ≤ 2 e2n

√
|u|.

We therefore need about 2n
√

max(0,−u)/ ln(2) bits of increased precision.
We can compute P ′n from Pn and Pn−1, but since this involves a division by 1−x2,

it is useful to evaluate P ′n directly when x is close to 1. We have P ′n(x) =
∑n−1
k=0 c

′
n,ku

k

where c′n,k = (k + 1)cn,k+1/2 satisfies

(32) c′n,0 =
n(n+ 1)

2
,

c′n,k
c′n,k−1

=
(n− k)(n+ k + 1)

k(k + 1)
.

Since c′n,k ≤ ncn,k+1, the analog

(33)

∣∣∣∣∣
n∑

k=K

c′n,ku
k

∣∣∣∣∣ ≤ n
(

n

K + 1

)(
n+K + 1

K + 1

)
|u|K 1

1− α

of Proposition 8 holds with u and α as above.

4.4. Hypergeometric series evaluation. We use rectangular splitting [23, 12]
to evaluate hypergeometric series with rational parameters where the argument x is a
high-precision number. This reduces evaluating a K-term series to O(K) cheap scalar
operations (additions and multiplications or divisions by small integer coefficients) and
about 2

√
K expensive nonscalar operations (general multiplications), whereas direct

evaluation of the hypergeometric recurrence uses O(K) expensive operations.
Algorithm 2 presents our version of rectangular splitting for the present applica-

tion. We implement the various series expansions by defining the polynomial evalua-
tion functions p(k), q(k) according to formulas (21), (26), (30), (32).

This algorithm is a generalization of the method for evaluating Taylor series of
elementary functions given in [13], which combines rectangular splitting with partially
unrolling the recurrence to reduce the number of scalar divisions (which in practice
are more costly than scalar multiplications). The terms are computed in the reverse
direction to allow using Horner’s rule for the outer multiplications.

Our code uses ball arithmetic for x and s so that no error analysis is needed,
and we use a bignum type for c (so no overflow can occur regardless of u). For low
precision a faster implementation would be possible using fixed-point arithmetic with
tight control of the word-level operations as was done for elementary functions in [13].

The algorithm contains two tuning parameters. The splitting parameter m con-
trols the number m of multiplications for powers versus the number K/m of multipli-
cations for Horner’s rule. The choice m ≈

√
K is optimal, but when evaluating two
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Algorithm 2 Evaluation of hypergeometric series using rectangular splitting
Input: An arbitrary x, recurrence data p, q ∈ Z[k], integer K ≥ 0, offset Ω ∈ {0, 1}.
Output: s =

∑K−1
k=Ω xk ∏k

j=Ω p(j)/q(j)

1: m← b
√
Kc; precompute [1, x, x2, . . . , xm] . Tuning parameter: any m ≥ 1 can be used

2: s← 0; k ← K − 1
3: while k ≥ Ω do
4: u← min(4, k + 1− Ω) . Tuning parameter: any 1 ≤ u ≤ k + 1− Ω can be used
5: (a, b)← (k − u + 1, k) . Unrolled range
6: c←

∏b
j=a p(j) . Small integer coefficient

7: while k ≥ a do
8: r ← k mod m
9: if k = b then

10: s← c · (s + xr) . Using precomputed power of x
11: else
12: s← s + c · xr . Using precomputed power of x
13: end if
14: if r = 0 and k 6= 0 then
15: s← s · xm . Using precomputed power of x
16: end if
17: c← (c/p(k))q(k) . Exact small integer division
18: k ← k − 1
19: end while
20: s← s/c
21: end while
22: return s

series for the same x (in our case, to compute both Pn(x) and P ′n(x)), the table of
powers can be reused, and then m ≈

√
2K minimizes the total cost.

The unrolling parameter u controls the number of coefficients to collect on a single
denominator, reducing the number of divisions to N/u. Ideally, u should be chosen so
that

∏b
j=a p(j) and

∏b
j=a q(j) fit in 1 or 2 machine words. The example value u = 4

is a reasonable default, but as an optimization, one might vary u for each iteration of
the main loop to ensure that c always fits in a specific number of words.

The redundant parameter Ω is a small convenience in the pseudocode. Setting
Ω = 1 and adding the constant term separately avoids having to make a special case
to prevent division by zero when q(0) = 0.

Due to the scalar operations, rectangular splitting ultimately requires O(K) arith-
metic operations with Õ(p) bit complexity each just like straightforward evaluation of
the recurrence, so it is not a genuine asymptotic improvement, but it is an improve-
ment in practice and can give more than a factor 100 speedup at very high precision.
It is possible to genuinely reduce the complexity of evaluating a hypergeometric se-
quence to O(

√
K log(K)) arithmetic operations using a baby-step giant-step method

that employs fast multipoint evaluation, but in practice rectangular splitting performs
better until both K and p exceed 106 (see [12]).

Another technique for fast evaluation of hypergeometric series, binary splitting,
would be useful when p is large and the argument x is a rational number with small
numerator and denominator, but this case is not relevant for our application.

Binary splitting also forms the basis of the bit-burst method [7, Section 4], which
permits evaluating any fixed hypergeometric series at any fixed point to absolute pre-
cision p in only Õ(p) bit operations. Computing Pn(x) by this method would require
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O(log p) analytic continuation steps, each of which would entail two evaluations of
general solutions of the Legendre differential equation (2), given by power series of
radius of convergence 1 − |x| whose coefficients obey recurrences of order two. This
is to be compared with a single series, given by a first-order recurrence and typically
converging faster, for the expansions considered in subsection 4.1 to subsection 4.3.
Thus, the bit-burst method is unlikely to be competitive in the range of precision we
are interested in, especially when the asymptotic series can be used.

Nevertheless, it can be shown that the solutions with unit initial values at x0
of (2) have Taylor coefficients ck at x0 bounded by (n2/(1 − |x0|))O(k) uniformly in
n and x0. As a consequence, the cost of computing any individual root of Pn(x) by
the bit-burst method and Newton iteration is Õ(p) log(n)O(1). For computing all the
roots, this approach matches the Õ(np) estimate of Theorem 1, while allowing for
parallelization and requiring less memory. It may hence provide an alternative to
multipoint evaluation worth investigating for precisions in the millions of bits.

4.5. Binomial coefficients. The prefactors of both the series expansion at
x = 0 and the asymptotic series contain the central binomial coefficient

(
2n
n

)
. We

need to compute this factor efficiently for any n and precision p. Since
(
2n
n

)
≈ 4n, it

is best to use an exact algorithm when n < Cp for some small constant C > 1/2. We
use the binomial function provided by GMP for n < 6p + 200 and otherwise use an
asymptotic series for

(
2n
n

)
with error bounds given in [5].

We also need to quickly estimate the magnitude of binomial coefficients for error
bounds of series truncations. We have the binary entropy estimate

log2

(
n

k

)
≤ nG(k/n), G(x) = −x log2(x)− (1− x) log2(1− x)

and the equivalent form

(34)
(
n

k

)
≤
(

n

n− k

)n−k (n
k

)k
=

nn

kk(n− k)n−k
.

The function G(x) can be evaluated cheaply with a precomputed lookup table. A
coarse estimate is sufficient, since overestimating log2

(
n
k

)
by a few percent only adds

a few percent to the running time.

5. Algorithm selection. We first use a set of cutoffs found experimentally
to decide whether to use the basecase recurrence or one of the series expansions.
The recurrence is mainly faster for some combinations of p < 1 000, n < 400 when
computing (Pn(x), P ′n(x)) simultaneously and for some combinations of p < 500,
n < 100 when computing Pn(x) alone (in all cases subject to some boundaries ε <
x < 1− ε); the actual optimal regions are complicated due to differences in overhead
between fixed-point integer arithmetic and ball arithmetic for the respective algorithm
implementations. For the actual cutoffs used, we refer to the source code.

To select between the series expansion at x = 0, the expansion at x = 1, and the
asymptotic series, the following heuristic is used. For each algorithm A, we estimate
the evaluation cost as CA = KA(p + pA) where KA is the number of terms required
by algorithm A (KA = ∞ if A is the asymptotic series and it does not converge to
the required accuracy), p is the precision goal, and pA is the extra precision required
by algorithm A due to internal cancellation. For the asymptotic series, we multiply
the cost by an extra factor 2 as a penalty for using complex numbers. In the end, we
select the algorithm with the lowest CA.
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Fig. 1. Time to evaluate (Pn(x), P ′n(x)) as the argument x = cos(θ) varies (x = 1 at θ = 0
and x = 0 at θ = π/2), here with n = 10 000, for precision p somewhat smaller than n (top plot)
and somewhat larger (bottom plot). The variable θ is used for the horizontal scale in this picture to
follow the distribution of the roots (which are clustered near x = 1) linearly.

We select KA and estimate pA heuristically using machine precision floating-point
computations, working with logarithmic magnitudes to avoid underflow and overflow.
During the actual evaluation of the series expansions, KA and pA are then given; we
compute rigorous upper bounds for the truncation error via (20), (22), (27), (31), (33),
(34) using floating-point arithmetic with directed rounding, while additional rounding
errors are tracked by the ball arithmetic.

The assumption that the running time is a bilinear function of KA and p + pA
is not completely realistic, but this cost estimate nonetheless captures the correct
asymptotics when

x→ 0, x→ 1, n→∞, p→∞

separately, and hopefully will not be too inaccurate in the transition regions. This is
verified empirically.

Figure 1 illustrates how the time to evaluate (Pn(x), P ′n(x)) varies with x when
the automatic algorithm selection is used. Here, we have timed the case n = 10 000
for two different p. For large n and p � n (top plot), a sharp peak appears at the
transition between the series expansion at x = 1 and the asymptotic expansion which
is used for most x. This peak tends to become taller but narrower for larger n. We
could presumably get rid of the peak by implementing another algorithm specifically
for the transition region, but the area under the peak is so small compared to the
median baseline that computing all the roots would not be sped up much. For p
somewhat larger than n (bottom plot), we observe a smooth transition between the
series at x = 1 near the left of the picture and the series at x = 0 used over the most
of the range.

6. Benchmarks. Except where otherwise noted, the timings were obtained on
a 1.90 GHz Intel Core i5-4300U CPU using a single core.

6.1. Polynomial evaluation. Figure 2 compares the performance of different
methods for evaluating (Pn(x), P ′n(x)) on a set of n/2 points distributed like the
positive roots of Pn(x) to simulate one stage of Newton iteration at p-bit precision.
The time for the three-term recurrence is set to 1, i.e. we divide the other timings by
this measurement. The following methods are timed:

• Our hybrid method (from here on called the “main algorithm”) with automatic
selection between the three-term recurrence and different series expansions.
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Fig. 2. Performance comparison of various methods to evaluate (Pn(x), P ′n(x)) to p-bit preci-
sion for a set of n/2 points 0 < x < 1 distributed like the roots of Pn. The y axis (relative time)
shows the time divided by the time using the three-term recurrence in fixed-point arithmetic.

• The main algorithm without the three-term recurrence as the basecase, i.e.
using series expansions even for very small n.

• Fast multipoint evaluation of the expanded polynomials Pn(x) and P ′n(x). As
in subsection 4.2, we expand Pn(

√
x) for even n and Pn(

√
x)/
√
x for odd n

and evaluate at x2 since this halves the amount of work. The polynomial co-
efficients are generated using the hypergeometric recurrence and the fast mul-
tipoint evaluation is done using _arb_poly_evaluate_vec_fast_precomp
(where the “precomp” suffix indicates that the same product tree is used
for both Pn and P ′n). The fast multipoint evaluation is done with 2.9n guard
bits, which was found experimentally to be sufficient for full accuracy.

The crossover point between the three-term recurrence and series expansions usu-
ally occurs around n ≈ 102 − 103 (it can be as low as n ≈ 10 if p is much larger).
For modest n, the three-term recurrence is much faster than the hypergeometric series
(typically by a factor 3-4) due to working with negligible extra precision and thanks to
the low overhead of fixed-point arithmetic. This low overhead is very useful for typical
evaluation of Legendre polynomials and generation of quadrature nodes for one or a
few machine words of precision. The crossover point could be lowered slightly if we
used a similarly optimized fixed-point implementation for the hypergeometric series.

When p is fixed (top left in Figure 2), the main algorithm is a factor O(n) faster
than the three-term recurrence since the asymptotic expansion converges to sufficient
accuracy after O(1) terms for all sufficiently large n. With the constant precision
p = 64, the main algorithm is 3.0 times faster for n = 103 and 30 times faster for
n = 104. Conversely, fast multipoint evaluation with constant p is a factor O(n)
slower than our algorithm due to the higher internal precision.
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When p ∝ n (the three remaining plots in Figure 2), the main algorithm appears
to show the same O(n) speedup over the three-term recurrence after the crossover
point, at least initially. This speedup should level off asymptotically, but in practice
this only occurs for n larger than 104 where we have already gained a factor 10 or
more. The leveling off is visible in the bottom right figure (p = 10n).

Fast multipoint evaluation gives a true asymptotic O(n) speedup, but since it has
much higher overhead, it only starts to give an improvement over the main algorithm
from n ≈ 104 and for p larger than n. When p = n/10, it appears that fast multipoint
evaluation will only break even for n much larger than 105. We conclude that fast
multipoint evaluation would be worthwhile only for the last few Newton iterations
when computing quadrature nodes for exceptionally high precision. Since independent
evaluations are more convenient and easy to parallelize, the fast multipoint evaluation
method currently seems to have limited practical value for this application.

6.2. Quadrature nodes. The function arb_hypgeom_legendre_p_ui_root(x,
w, n, k, p) sets the output variable x to a ball containing the root of Pn with index k
(we use the indexing 0 ≤ k < n, with k = 0 giving the root closest to 1), computed
to p-bit precision. It also sets w to the corresponding quadrature weight. We use
the formulas in [21] to compute an initial enclosure with roughly machine precision,
followed by refinements with the interval Newton method at doubling precision steps
for very high precision.

Table 1
Time in seconds to compute the set of degree-n Gauss-Legendre nodes and weights with p-bit

precision. (For large n and p, the time was estimated by computing a subset of the nodes and
weights.)

n \ p 64 256 1 024 3 333 33 333

20 0.000133 0.000229 0.000510 0.00121 0.0198
50 0.000450 0.000870 0.00212 0.00520 0.0710
100 0.00138 0.00310 0.00720 0.0163 0.191
200 0.00550 0.0111 0.0267 0.0550 0.589
500 0.0236 0.0610 0.164 0.325 2.61

1 000 0.0530 0.145 0.584 1.238 9.21
2 000 0.0860 0.298 1.12 4.20 32.6
5 000 0.191 0.665 2.67 14.3 181
10 000 0.350 1.26 4.93 26.6 674

100 000 3.60 12.2 41.3 212 13 637
1 000 000 58.0 146 411 1 850 103 960

Table 1 shows absolute timings for computing degree-n Gauss-Legendre rules to
p-bit precision by calling this function repeatedly with 0 ≤ k < n/2. Table 2 shows
the speedup ratio of our code compared to the intnumgaussinit function in Pari/GP
which uses a generic polynomial root isolation strategy followed by Newton iteration
for high precision refinement. The improvement is most dramatic for small p and
large n where we benefit from using asymptotic expansions, but we also obtain a
consistent speedup for large p.

For low precision and large n, our implementation is about three orders of mag-
nitude slower than the machine precision code by Bogaert [3] which is reported to
compute the nodes and weights for n = 106 in 0.02 seconds on four cores. This dif-
ference is reasonable since we use arbitrary-precision arithmetic, compute rigorous
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Table 2
Speedup of our code compared to Pari/GP for generating degree-n Gauss-Legendre quadrature

rules with p-bit precision.

n \ p 64 256 1 024 3 333 33 333
20 4.4 3.1 2.9 2.9 3.9
50 9.6 5.8 4.9 4.1 6.0
100 15 7.4 6.3 5.5 8.1
200 20 11 9.1 8.1 11
500 86 35 18 16 22

1 000 477 180 49 32 33
2 000 5 767 1 604 423 127 58

error bounds, and evaluate the Legendre polynomials explicitly whereas Bogaert uses
a more sophisticated asymptotic development for both the nodes and the weights.

We also note that we can compute 53-bit floating-point values with provably
correct rounding in about the same time as the 64-bit values, using Ziv’s strategy of
increasing the precision. For a ball with relative radius just larger than 2−64, there is
less than a 1% probability that the correct 53-bit rounding cannot be determined, in
which case that particular node can be recomputed with a few more bits.

Fousse [8] reports a few timings for smaller n and high precision obtained on a
2.40 GHz AMD Opteron 250 CPU. For example, n = 80, p = 500 takes 0.14 seconds
(our implementation takes 0.029 seconds) and n = 556, p = 5 000 takes 17 seconds
(our implementation takes 0.53 seconds). Of course, these timings are not directly
comparable since different CPUs were used.

The mathinit program included with version 2.2.19 of D. H. Bailey’s ARPREC
library generates Gauss-Legendre quadrature nodes using Newton iteration together
with the three-term recurrence for evaluating Legendre polynomials [2, 1]. With
default parameters, this program computes the rules of degree n = 3 · 2i+1 for 1 ≤
i ≤ 10 at 3 408 bits of precision, intended as a precomputation for performing degree-
adaptive numerical integrations with up to 1 000 decimal digit accuracy. This takes
about 1 300 seconds (our implementation takes 32 seconds). A breakdown for each
degree level is shown in Table 3.

Table 3 also shows the approximation error and the evaluation time (using precom-
puted nodes and weights) for the degree-n approximations of three different integrals,
illustrating the relative costs and realistic requirements for n. As motivation for the
third integral, we might think of a segment of a Mellin-Barnes integral. The log, Airy
and gamma function implementations in Arb are used.

The last few degree levels (with n roughly larger than the number of decimal
digits) used by ARPREC tend to be dispensable for well-behaved integrands. A
larger n is needed if the path of integration is close to a singularity or if the integrand
is highly oscillatory. In such cases, bisecting the interval a few times to reduce the
necessary n is often a better tradeoff. On the other hand, since the time to generate
nodes with our code only grows linearly with n beyond n ≈ p, increasing the degree
further is viable, and potentially useful if the integrand is expensive to evaluate.

In the present work, we abstain from a more detailed discussion of adaptive inte-
gration strategies and the computation of error bounds for the integral itself. How-
ever, we mention that Arb contains an implementation of a version of the Petras
algorithm [22] for rigorous integration. This code uses both adaptive path subdivi-
sion and Gauss-Legendre quadrature with an adaptive choice of n up to n ≈ 0.5p
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Table 3
Left columns: time in seconds to generate 1 000-digit quadrature rules for the degrees n used

by ARPREC. Right columns: for three different integrals, the error |
∫ 1
−1 f(x)dx−

∑n−1
k=0 wkf(xk)|

of the degree-n quadrature rule, and the time to evaluate this degree-n approximation of the integral
at 1 000-digit precision in Arb given precomputed nodes and weights (xk, wk).

n ARPREC Our code
∫ 1

−1log(2+x)dx
∫ 1

−1Ai(10x)dx
∫ 1

−1Γ(1+ix)dx

Error Time Error Time Error Time

12 0.00520 0.000592 10−14 10−1 10−8

24 0.0189 0.00171 10−28 10−9 10−17

48 0.0629 0.00507 10−56 10−34 10−36

96 0.251 0.0163 10−111 10−105 10−73

192 0.974 0.0532 10−222 10−284 0.075 10−146

384 3.83 0.195 10−441 0.023 10−721 0.15 10−293 1.3
768 15.2 0.763 10−881 0.045 < ε 0.29 10−588 2.5

1 536 60.9 2.82 < ε 0.091 < ε 5.0
3 072 241 9.55
6 144 1 013 18.3

Table 4
Left columns: step sizes h, number of evaluation points, and time to compute nodes for double

exponential quadrature with Arb at 1 000-digit precision. Right columns: error and evaluation time
given precomputed nodes.

h 2n+ 1 Time
∫ 1

−1log(2+x)dx
∫ 1

−1Ai(10x)dx
∫ 1

−1Γ(1+ix)dx

Error Time Error Time Error Time

2−7 1 989 0.07 10−407 0.12 10−423 0.93 10−314 6.3
2−8 3 977 0.14 10−814 0.25 10−909 1.75 10−630 13.0
2−9 7 955 0.27 < ε 0.55 < ε 3.49 < ε 25.1

by default, with degree increments n ≈ 2k/2 and automatic caching of the nodes for
fast repeated integrations. Node generation takes at most a few seconds for a first
integration at 1 000-digit precision and a few milliseconds for 100-digit precision.

7. Gauss-Legendre versus Clenshaw-Curtis and the double exponen-
tial method. The Clenshaw-Curtis and double exponential (tanh-sinh) quadrature
schemes have received much attention as alternatives to Gauss-Legendre quadrature
for numerical integration with very high precision [24, 1, 27]. Both schemes typically
require a constant factor more evaluation points than Gauss-Legendre rules for equiv-
alent accuracy, but the nodes and weights are easier to compute. Gauss-Legendre
quadrature is therefore the best choice when the integrand is expensive to evaluate
or when nodes can be precomputed for several integrations. It is of some interest to
compare the relative costs empirically.

Here we assume an analytic integrand with singularities well isolated from the
finite path of integration so that Gauss-Legendre quadrature is a good choice to begin
with. As observed in [27], Clenshaw-Curtis often converges with identical rate to
Gauss-Legendre for less well-behaved integrands, and the double exponential method
is far superior to either Clenshaw-Curtis or Gauss-Legendre for analytic integrands
with endpoint singularities.

Clenshaw-Curtis quadrature uses the Chebyshev nodes cos(πk/n), 0 ≤ k ≤ n,
and the corresponding weights can be expressed by a discrete cosine transform which
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takes O(n log n) arithmetic operations to compute by FFT. As a rule of thumb, 2n-
point Clenshaw-Curtis quadrature gives the same accuracy as n-point Gauss-Legendre
quadrature (for instance, the 384-point Clenshaw-Curtis rule gives errors of 10−229,
10−294 and 10−154 for the three integrals in Table 3). As a point of comparison
with Tables 1 and 3, Arb computes a length-2 048 FFT with 1 000-digit precision
in 0.09 seconds and a length-32 768 FFT with 10 000-digit precision in 36 seconds.
The precomputation for Clenshaw-Curtis quadrature is therefore roughly a factor 20
cheaper than for Gauss-Legendre quadrature with our algorithm, while subsequent
integration with cached weights is twice as expensive for Clenshaw-Curtis.

Double exponential quadrature uses the change of variables x = tanh( 1
2π sinh t)

to convert an integral on (−1, 1) to the interval (−∞,+∞) in such a way that the
trapezoidal rule

∫∞
−∞ f(t)dt ≈ h

∑n
k=−n f(hk) converges exponentially fast. One gen-

erally chooses the discretization parameter as h = 2−j so that both the evaluation
points and weights can be recycled for successive levels j = 1, 2, 3 . . ., and n is chosen
so that the tail of the infinite series is smaller than 2−p. The 2n+1 nodes and weights
can be computed with n + O(1) exponential function evaluations and O(n) arith-
metic operations. Double exponential quadrature with Cn evaluation points typically
achieves the same accuracy as n-point Gauss-Legendre quadrature, where C is slightly
larger than for Clenshaw-Curtis, e.g. C ≈ 5; see Table 4. The time to compute nodes
and weights is comparable to Clenshaw-Curtis quadrature (around 0.2 seconds for
1 000-digit precision and two minutes for 10 000-digit precision).

In summary, for integration with precision in the neighborhood of 103 to 104

digits, computing n nodes with our algorithm is about an order of magnitude more
expensive than performing n elementary function (e.g. exp or log) evaluations or
computing an FFT of length n. This makes Gauss-Legendre quadrature competitive
for computing more than m integrals (assuming that nodes and weights are cached),
for a single integral requiring splitting intom subintervals, or for a single integral when
the integrand costs more than m elementary function evaluations, where m ≈ 101.

The picture becomes more complicated when accounting for the method used to
estimate errors in an adaptive integration algorithm. One drawback of the Gauss-
Legendre scheme is that the nodes are not nested, and therefore an adaptive strategy
that repeatedly doubles the quadrature degree requires twice the number of function
evaluations as the degree of the final level. However, this drawback disappears if the
error is estimated by extrapolation or if an error bound is computed a priori as in the
Petras algorithm [22].

8. Conclusion. In [1], it was claimed that “There is no known scheme for gen-
erating Gaussian abscissa–weight pairs that avoids [the] quadratic dependence on n.
High-precision abscissas and weights, once computed, may be stored for future use.
But for truly extreme-precision calculations – i.e., several thousand digits or more –
the cost of computing them even once becomes prohibitive”.

In this quote, “quadratic dependence” refers to the number of arithmetic opera-
tions. We may remark that using asymptotic expansions in the evaluation of Legendre
polynomials avoids the quadratic dependence on n for fixed precision p, and Theo-
rem 1 avoids the implied cubic time dependence on n when n ∼ p. In fact, Theorem 1
implies that Gauss-Legendre, Clenshaw-Curtis and double exponential quadrature
have the same quasi-optimal asymptotic bit complexity, up to logarithmic factors.

Our experiments show that the algorithm in Theorem 1 hardly is worthwhile.
However, our main algorithm does achieve a significant speedup for practical p and n
which allows us to compute Gauss-Legendre quadrature rules for 1 000-digit integra-
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tion in 1-2 seconds and for 10 000-digit integration in 10-20 minutes on a single core.
This is not prohibitively expensive compared to the repeated evaluation of typical
integrands, especially if several integrations are needed. Parallelization is also trivial
since all roots are computed independently.

A natural extension of this work would be to consider Gaussian quadrature rules
for different weight functions. The techniques that work for Legendre polynomials
should transfer to other classical orthogonal polynomials (Jacobi, Hermite, Laguerre,
etc.) which likewise have hypergeometric expansions and satisfy three-term recurrence
relations. The main obstacle might be to obtain large-n asymptotic expansions with
suitable error bounds.
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