
NumGfun User Manual

Marc Mezzarobba

Manual for NumGfun v. 1.0
Last updated 2014-09-03

NumGfun User Manual
by Marc Mezzarobba

iii

Contents
 Overview of the gfun[NumGfun] Package .. 1
 NumGfun[bound_diffeq] - majorant series for D-finite functions; NumGfun[bound_diffeq_tail] - bound the
tails of the power series expansion of a D-finite function .. 4
 NumGfun[bound_ratpoly] - majorant series for rational functions .. 6
 NumGfun[bound_rec] - bound a sequence given by a recurrence relation; NumGfun[bound_rec_tail] - bound
the tails of a series whose general term satisfies a recurrence relation ... 7
 NumGfun[diffeqtoproc] - create a Maple procedure from a differential equation 9
 NumGfun[dominant_root] - dominant root of a polynomial .. 11
 NumGfun[evaldiffeq], NumGfun[analytic_continuation] - numerical evaluation of D-finite functions;
NumGfun[transition_matrix] - numerical connection between regular points ... 12
 NumGfun[local_basis] - “canonical” local basis of the solution space of a linear ODE 16
 NumGfun[plot_path] - display an analytic continuation path ... 18

1

Overview of the gfun[NumGfun] Package

Calling Sequence

gfun[NumGfun][command](arguments)

command(arguments)

Description

The NumGfun package provides tools to perform “analytic” and numerical computations with power series giv-
en by linear differential equations with polynomial coefficients, analytic functions defined by convergent series
of the same kind, and sequences given by recurrence relations with polynomial coefficients.

Its main features include the ability to compute:

• numerical values of analytic solutions of ODEs with polynomial coefficients, and transition matrices between
ordinary or regular singular points of such equations, with guaranteed accuracy (that is, using rigorous error
bounds),

• various kinds of symbolic bounds on the general terms/coefficients of solutions.

NumGfun is a subpackage of gfun.

List of NumGfun Package Commands
• Numerical evaluation and analytic continuation:
analytic_continuation diffeqtoproc evaldiffeq transition_matrix

• Symbolic bounds:
bound_diffeq bound_diffeq_tail bound_ratpoly bound_rec bound_rec_tail

• Utilities:
dominant_root fnth_term local_basis plot_path

Informational Messages and Settings
• The verbosity level of NumGfun commands is determined by the value of infolevel[gfun]. Levels 1 to 5 cor-

respond to informational messages. Levels 6 and higher additionally turn on debugging information.

• The Settings submodule provides a number of tuning parameters that influence the behaviour of NumGfun.
As most of them require a detailed understanding of the algorithms and their implementation, the settings are
only documented in the package's source code. Yet, error messages sometimes suggest changing a particu-
lar setting when a computation fails. This can be done by assigning a value to a member of Settings, as in:
NumGfun:-Settings:-default_eval_precision := 100.

Examples
> with(gfun): with(NumGfun):

fnth_term({(3*n+3)*u(n+1)=(3*n+5)*u(n), u(0)=1}, u(n), 2000, 50);

(1.1)

> deq := holexprtodiffeq(arctan(z), y(z));
evaldiffeq(deq, y(z), 1/2, 50);

(1.2)

> deq := (z^2+1)*diff(y(z),z,z) + (3*z+1)*diff(y(z),z) + z^2*y(z);

2 • Overview of the gfun[NumGfun] Package

analytic_continuation(deq, y(z), [0, 1+I, 2], 50);

(1.3)

> deq := {(z^2-1)*diff(y(z),z,z)+(z^3+3)*y(z), y(0)=1, D(y)(0)=0};
analytic_continuation(deq, y(z), [0, 1], 10, 'ord'=3);

(1.4)

> deq := op(select(has, deq, z));
transition_matrix(deq, y(z), [0, 1], 10);

(1.5)

> bound_ratpoly((z^7+3*z^2+z+1)/((z-2)^3*(z^3-3)*(z-I)^2), z);

(1.6)

> deq := holexprtodiffeq(arctan(z), y(z));
bound_diffeq(deq, y(z));

(1.7)

Licence and Contact Information
• NumGfun is part of Algolib (http://algo.inria.fr/libraries/) available under the GNU Lesser General Public Li-

cence, version 2.1 or, at your option, any later version. See the file COPYING for details.

• The source code for NumGfun can be downloaded from http://marc.mezzarobba.net#code-NumGfun.

• Please send your comments and bug reports to <marc@mezzarobba.net>.

References

The primary reference to use when citing NumGfun is:

• Marc Mezzarobba. NumGfun: a Package for Numerical and Analytic Computation with D-finite Functions.
In Proceedings of the 2010 International Symposium on Symbolic and Algebraic Computation (ISSAC 2010),
pages 139–145. ACM, 2010. (arXiv:1002.3077, doi:10.1145/1837934.1837965).

3 • Overview of the gfun[NumGfun] Package

A more detailed and up-to-date description as well as an in-depth discussion of many of the underlying algo-
rithms appear in:

• Marc Mezzarobba. Autour de l'évaluation numérique des fonctions D-finies. Thèse de doctorat, École poly-
technique, 2011. (In French.)

Original references for the algorithms implemented in NumGfun include the following:

• David V. Chudnovsky & Gregory V. Chudnovsky. Approximations and complex multiplication according to
Ramanujan. Ramanujan revisited, Academic Press, 1988, 375-472.

• Marc Mezzarobba & Bruno Salvy. Effective Bounds for P-Recursive Sequences. Journal of Symbolic Com-
putation 45(10):1075–1096, 2010. (doi:10.1016/j.jsc.2010.06.024)

• Joris van der Hoeven. Fast evaluation of holonomic functions. Theoretical Computer Science, 1999, 210,
199-216.

See Also

gfun, DEtools, UsingPackages, with

4

NumGfun[bound_diffeq] - majorant series for D-
finite functions; NumGfun[bound_diffeq_tail] - bound
the tails of the power series expansion of a D-finite
function

Calling Sequences

bound_diffeq(eq, y(z))

bound_diffeq_tail(eq, y(z), n)

Parameters

eq - linear differential equation with polynomial coefficients, with initial values at origin

y - name; function name

z - name; variable of the function y

n - name; starting index of the tails

Description
• The bound_diffeq command computes a majorant series for the power series expansion at 0 of a formal

power series specified as the solution of a linear differential equation with polynomial coefficients along with
initial values. A majorant series of a formal series f with complex coefficients is a series g with nonnega-
tive coefficients such that for all n, the coefficients f[n] and g[n] of z^n in f(z) and g(z) respectively satisfy
abs(f[n]) <= g(n). The majorant series is a “tight” bound in the sense that its disk of convergence extends to
the nearest singularity of the differential equation.

• The bound_diffeq_tail command computes a bound for the tails Sum(y[k]*z^k, k=n..infinity) of the power
series expansion at 0 of an analytic function given as the solution of a linear differential equation with poly-
nomial coefficients along with initial values. The output is formula involving the starting index n of the sum-
mation range.

• Differential equations with no initial values are also allowed on input. In this case, the output is only deter-
mined up to a constant factor, and is such that all formal power series (resp. convergent power series) solu-
tions admit a majorant series (resp. a tail bound) of the given form for a suitable choice of constant. The con-
stant depends on the particular choice of solution.

• Some intermediate computations are performed numerically, at a precision determined by the Digits environ-
ment variable. In particular, the value of Digits influences the precision at which some (rational) constants ap-
pearing in the bounds are computed. In rare cases, these functions may fail to produce a finite bound although
one exists, and increasing Digits can help. (It is a bug, however, if an incorrect bound is returned.)

Examples
> with(gfun:-NumGfun):

> bound_diffeq({diff(y(z),z)=y(z), y(0)=1}, y(z));

(2.1)

> bound_diffeq({(1+z)*diff(y(z),z)=y(z), y(0)=1}, y(z));

(2.2)

5 • NumGfun[bound_diffeq] - majorant series for D-finite functions; NumGfun[bound_diffeq_tail] - bound
the tails of the power series expansion of a D-finite function

> bound_diffeq((1+z)*diff(y(z),z)=y(z), y(z));

Warning, incomplete initial conditions. The returned bound will hold (for a suitable
 choice of _C) for all *power series* solutions.

(2.3)

> bound_diffeq({diff(y(z),z,z)=z*y(z), y(0)=1, D(y)(0)=1}, y(z));

(2.4)

> bound_diffeq_tail({diff(y(z),z)=y(z), y(0)=1}, y(z), n);

(2.5)

> bound_diffeq_tail({(1+z)*diff(y(z),z)=y(z), y(0)=1}, y(z), n);

(2.6)

> bound_diffeq_tail(diff(y(z),z)=y(z), y(z), n);

Warning, incomplete initial conditions. The returned bound will hold (for a suitable
 choice of _C) for all *power series* solutions.

(2.7)

See Also

gfun, NumGfun, bound_ratpoly, bound_rec

6

NumGfun[bound_ratpoly] - majorant series for rational
functions

Calling Sequence

bound_ratpoly(rat, z)

Parameters

rat - rational function

z - name; variable of the rational function rat

Description
• The bound_ratpoly command computes a majorant series for the series expansion at 0 of a rational function.

• A majorant series of a formal Laurent series f with complex coefficients is a series g with nonnegative coeffi-
cients such that for all n, the the coefficients f[n] and g[n] of z^n respectively in f(z) and g(z) satisfy abs(f[n])
<= g[n].

• The majorant series returned by bound_ratpoly is of the form A/((z^j)*(1-u*z)^m)+P(z) where A and u are
nonnegative constants, j and m are nonnegative integers, and P is a Laurent polynomial with nonnegative
coefficients. It is a “tight” bound in the sense that the radius of convergence of its power series expansion
matches that of the power series expansion of rat.

Examples
> with(gfun:-NumGfun):

> bound_ratpoly(1/(z+5), z);

(3.1)

> bound_ratpoly((5*z^6+z+2)/(z^3*(z^3+1)^2*(z+I)), z);

(3.2)

See Also

gfun, NumGfun, ratpolytocoeff, bound_diffeq

7

NumGfun[bound_rec] - bound a sequence given by a
recurrence relation; NumGfun[bound_rec_tail] - bound
the tails of a series whose general term satisfies a
recurrence relation

Calling Sequences

bound_rec(rec, u(n))

bound_rec_tail(rec, u(n))

Parameters

rec - linear recurrence relation with polynomial coefficients, along with initial values

u - name; sequence name

n - name; variable of the sequence u

Description
• The bound_rec command computes a bound for the absolute value of the solution of a sequence given as the

solution of a recurrence relation. The output is a formula involving the index n of the sequence.

• The bound_rec_tail command computes a bound for the series tails Sum(u(k), k=n..infinity), given a recur-
rence relation satisfied by u.

• Recurrences with no initial values are also allowed on input. In this case, the output is only determined up to a
constant factor, and is such that solutions defined for all nonnegative n admit a bound of the given form for a
suitable choice of constant. The constant depends on the particular choice of solution.

• Some intermediate computations are performed numerically, at a precision determined by the Digits environ-
ment variable. In particular, the value of Digits influences the precision at which some (rational) constants ap-
pearing in the bounds is computed. In rare cases, these functions may fail to produce a finite bound although
one exists, and increasing Digits can help. (It is a bug, however, if an incorrect bound is returned.)

Examples
> with(gfun:-NumGfun):

> bound_rec({I*u(n+1) = (n+1)*u(n), u(0)=3}, u(n));

(4.1)

> bound_rec({(2*n+2)^2*u(n+1) = -(n+1)*u(n), u(0)=1}, u(n));

(4.2)

> # constant coefficients

8 • NumGfun[bound_rec] - bound a sequence given by a recurrence relation; NumGfun[bound_rec_tail] -
bound the tails of a series whose general term satisfies a recurrence relation

bound_rec({15*u(n)-4*u(n+1)-13*u(n+2)+5*u(n+3), u(0) = 17/5, u(1) = 3, u(2) =
 3/12, u(3) = 0, u(4) = 5, u(5) = 0}, u(n));

(4.3)

> bound_rec_tail({I*(n+1)*u(n+1) = u(n), u(0)=1}, u(n));

(4.4)

See Also

gfun, NumGfun, bound_diffeq

9

NumGfun[diffeqtoproc] - create a Maple procedure
from a differential equation

Calling Sequence

diffeqtoproc(eq, y(z), [prec=precision, disks=disk_list])

Parameters

eq - linear differential equation with polynomial coefficients

y - name; function name

z - name; variable of the function y

precision - (optional) positive integer; number of digits (of absolute precision)

disks_list - (optional) list of lists of the form [path, radius]

Description
• The diffeqtoproc(eq, y(z)) command returns a Maple procedure p such that p(u, [precision]) (where u may

be a point or a path) evaluates y at u to the absolute precision precision. More precisely, p(u, [precision]) is
equivalent to evaldiffeq(eq, y(z), u, [precision]); see the help page of evaldiffeq for details.

• If the options precision and disks are given, diffeqtoproc performs precomputations that make subsequent
evaluations to precisions up to precision at points within one of the disks given in disk_list faster. The ele-
ments of disk_list are lists of the form [path, radius] where path is a path (starting at the origin and avoiding
the singular points of eq) whose endpoint gives the center of the disk. The precomputed data is used, if pos-
sible, for calls of the form p(u, [precision]) where u is a single point (as opposed to a path), and only in this
case. (Thus, the choice of the determination for multivalued functions y is done at precomputation time.)

Examples
> with(gfun): with(NumGfun):

> eq := diffeqtohomdiffeq(holexprtodiffeq(arctan(z),y(z)),y(z));

(5.1)

> p := diffeqtoproc(eq, y(z)):
[p([0, 1+I, 2*I], 30), p([0, -1+I, 2*I], 30)];

(5.2)

> eq := holexprtodiffeq(AiryAi(z), y(z));

(5.3)

> p := diffeqtoproc(eq, y(z), 'prec'=12, 'disks'=[[-2.5,3],[2.5,3]]):

10 • NumGfun[diffeqtoproc] - create a Maple procedure from a differential equation

> plot(p, -5..5);

> infolevel[gfun] := 2:

> p(-3, 10);

(5.4)

> p(-3, 30);

p: using multiple-precision analytic continuation

rewrite_path: final analytic continuation path is [0 0 -3]
ordinary_step_transition_matrix: 0 --> -3 ord=1, prec~=.54e-31, terms=88
Recall that gfun:-NumGfun uses *absolute* error.

(5.5)

> p(-42);

p: using multiple-precision analytic continuation

rewrite_path: final analytic continuation path is [0 0 -42]
ordinary_step_transition_matrix: 0 --> -42 ord=1, prec~=.54e-11, terms=840

Recall that gfun:-NumGfun uses *absolute* error.

(5.6)

See Also

gfun, NumGfun, rectoproc, evaldiffeq

11

NumGfun[dominant_root] - dominant root of a
polynomial

Calling Sequence

dominant_root(pol, z, [rootof])

Parameters

pol - polynomial with algebraic coefficients and nonzero constant term

z - name; variable

rootof - optional keyword

Description
• The dominant_root command computes one of the roots of pol of maximum multiplicity among those of

minimum absolute value.

• The constant term of pol must be nonzero.

• The output is a list of the form [root, multiplicity].

• With option rootof, if the dominant root is not rational, it is returned as a RootOf.

Examples
> with(gfun:-NumGfun):

> dominant_root((z-1)*(z^2+1)^2, z);

(6.1)

> dominant_root((z-1)*(z^2+1)^2, z, 'rootof');

(6.2)

See Also

gfun, NumGfun, bound_ratpoly

12

NumGfun[evaldiffeq], NumGfun[analytic_continuation]
- numerical evaluation of D-finite functions;
NumGfun[transition_matrix] - numerical connection
between regular points

Calling Sequences

evaldiffeq(eq, y(z), point, [precision])

evaldiffeq(eq, y(z), path, [precision], [ord=order], [monomials])

analytic_continuation(...)

transition_matrix(eq, y(z), path, [precision])

Parameters

eq - linear differential equation with polynomial coefficients

y - name; function name

z - name; variable of the function y

point - complex number; evaluation point

path - list of complex numbers; analytic continuation path

precision - (optional) positive integer; required absolute accuracy (in decimal digits)

ord - (optional) positive integer; number of terms of local expansion to return

Description

Basic Usage

• The evaldiffeq(eq, y(z), point, precision) command evaluates the solution of the differential equation eq at
point with an absolute error bounded by 10^(-precision). The evaluation point must lie closer to zero than
any of the singular points of the differential equation. (The origin itself must be an ordinary point.)

• The more general calling sequence evaldiffeq(eq, y(z), path, precision) evaluates the function defined by an-
alytic continuation of the solution along a broken-line path starting at 0 and avoiding the singular points of
the equation, given as a list of vertices. In particular, evaldiffeq(eq, y(z), [point], precision) is equivalent to
evaldiffeq(eq, y(z), point, precision) if point lies within the disk where the latter is defined, and gives the
value of the solution defined on the Mittag-Leffler star with center at 0 of the differential equation eq other-
wise.

• analytic_continuation is synonymous with evaldiffeq.

• Instead of the value of a single solution, transition_matrix(eq, y(z), path, [precision]) computes the funda-
mental matrix at the endpoint of the path, corresponding to initial conditions Y(z0)=Id at the starting point.
The i-th row of Y(z) contains the value of the coefficient of z^i in the Taylor expansion of each fundamental
solution. Initial values given in the differential equation are ignored. The path does not need to start at 0. The
meaning of the other parameters is unchanged.

• In all these cases, point and the elements of path are expected to be of type complex(numeric).

Regular Singular Points

• The endpoints of an analytic continuation path may also be regular singular points of the differential equation.
If z0 and z1 are regular (i.e., ordinary or regular singular) points, the entries of the transition matrix from z0

13 • NumGfun[evaldiffeq], NumGfun[analytic_continuation] - numerical evaluation of D-finite functions;
NumGfun[transition_matrix] - numerical connection between regular points

to z1 along a certain path are the coefficients of the expression in a certain “local basis at z1” of the elements
of the “local basis at z0” extended by analytic continuation along that path. In other words, the transition ma-
trix sends the coefficients of the decomposition of a given solution on the first local basis to the coefficients
of the expression of the same solution on the second local basis. Local bases are defined in such a way that
this generalizes the above definition of transition matrices between ordinary point.

• Local bases can be computed using the local_basis command.

• When the keyword parameter ord is set to a positive integer order, evaldiffeq returns the first order terms
of the generalized series expansion of the solution of interest at the endpoint of the path, in a format illustrat-
ed below. Alternatively, the keyword monomials can be specified to annotate each numerical connection
constant with the leading term of the generalized series expansion of the corresponding local solution. If none
of these options is given, only the connection constant corresponding to the first element of the local basis
(corresponding in some sense to the “asymptotically dominant” local solution) is returned.

• There is no syntax for specifying “initial values” at regular singular points as part of the equation eq. When
the origin is a regular singular point, evaldiffeq returns an expression involving symbolic constants _C[0],
_C[1], ... representing the coefficients of the decomposition of y(z) in the canonical basis at the origin.

• Arbitrary algebraic numbers are allowed as part of analytic continuation paths when they correspond to regu-
lar singular points of the differential equation. They must be specified as indexed RootOfs.

Accuracy

• All these functions are designed to ensure the accuracy of the output: it is a bug if the result is not within
10^(-precision) of the exact value of the function.

• As an exception to the previous rule, regular singular connection problems for differential equations with a
single finite singular point currently rely on heuristic error estimates. (A warning is issued when such an esti-
mate is used.)

• When the result is not a single floating-point number, the floating-point coefficients appearing in it are “quot-
ed” using the empty symbol `` to prevent automatic floating-point simplification of the output. This happens
in particular when the initial values contain symbolic parameters.

• The Digits environment variable has no influence on the accuracy of the results. However, some internal
computations, including that of intermediate error bounds, are performed at precision Digits (typically, using
interval arithmetic to ensure that the final result remains rigorous). In rare cases (e.g., equations with singular-
ities at distance about 10^(-Digits) from each other), it may be necessary to increase Digits for the computa-
tion to succeed.

• Likewise, evaluation points given in floating-point format are interpreted as exact rational numbers (or com-
plex numbers with rational real and imaginary parts) regardless of the setting of Digits.

Performance

• These commands implement asymptotically fast algorithms, allowing in principle for evaluations at very high
precisions (up to millions of digits). However, the constant factors involved are comparatively large and the
cost grow fast with the complexity (order, degree, growth of a generic solution) of the equation.

• They are less suitable to be called repeatedly, even at moderate precisions. In particular, potentially costly
bound computations are performed before each evaluation. For repeated evaluations at moderate precision in
a known domain, try using diffeqtoproc instead.

Examples
> restart; with(gfun:-NumGfun):

> evaldiffeq({diff(y(z),z)-y(z), y(0)=1}, y(z), 1, 50);

(7.1)

> analytic_continuation({(1+z^2)*diff(y(z),z,z)-(2*z+3)*y(z)+I*y(z), y(0)=Pi, D(y)
(0)=-I}, y(z), [0, 2]);

(7.2)

14 • NumGfun[evaldiffeq], NumGfun[analytic_continuation] - numerical evaluation of D-finite functions;
NumGfun[transition_matrix] - numerical connection between regular points

Computation of a local monodromy matrix by analytic continuation along a closed path around a singular point:

> eq := gfun:-diffeqtohomdiffeq(gfun:-holexprtodiffeq(arctan(z),y(z)),y(z));

(7.3)

> transition_matrix(eq, y(z), [2*I, -1+I, 0, 1+I, 2*I], 20);

Warning, initial conditions {y(0) = 0, (D(y))(0) = 1} will be ignored

(7.4)

Numerical connection between an ordinary point and a regular singular point:

> evaldiffeq(eq, y(z), [0, I], 30, 'ord'=3);

(7.5)

> evaldiffeq(eq, y(z), [0, I], 30, 'monomials');

(7.6)

> evaldiffeq(eq, y(z), [0, I], 30);

(7.7)

> eq := op(select(has, eq, z));

(7.8)

> evaldiffeq(eq, y(z), [0, I], 10, 'ord'=3);

(7.9)

The same result expressed as a transition matrix:

> local_basis(eq, y(z), 0), local_basis(eq, y(z), I);

(7.10)

> transition_matrix(eq, y(z), [0, I], 10);

(7.11)

Algebraic numbers

> eq := (z^2-2)*diff(y(z),z,z) + z*y(z) + y(z);

(7.12)

15 • NumGfun[evaldiffeq], NumGfun[analytic_continuation] - numerical evaluation of D-finite functions;
NumGfun[transition_matrix] - numerical connection between regular points

> alias(alpha=convert(sqrt(2), 'RootOf'));

(7.13)

> local_basis(eq, y(z), alpha, 3);

(7.14)

> # [0,1,alpha] rather than [0,alpha] to work around a weakness
of evalrC
transition_matrix(eq, y(z), [0, 1, alpha]);

(7.15)

A case where only heuristic error control is currently implemented:

> eq := holexprtodiffeq(Ei(z), y(z));

(7.16)

> evaldiffeq(eq, y(z), [0, 1], 20);

Warning, infinite radius of convergence at regular singular point 0: rigorous error
 bounds are not implemented, falling back on heuristics

(7.17)

See Also

gfun, NumGfun, diffeqtoproc, local_basis, nth_term

16

NumGfun[local_basis] - “canonical” local basis of the
solution space of a linear ODE

Calling Sequence

local_basis(eq, y(z), point, [order])

Parameters

eq - linear differential equation with polynomial coefficients

y - name; function name

z - name; variable of the function y

point - complex number; point at which to compute the local basis

order - integer, truncation order

Description
• The local_basis command returns the first few terms of the local basis of generalized series solutions at a giv-

en point of a differential equation used by other NumGfun commands.

• The expansion point must be a regular (i.e., ordinary or regular singular) point, and can be specified as an ex-
pression of type complex(numeric) or as an indexed RootOf.

Examples
> with(gfun:-NumGfun):

Ordinary points:

> eq := diff(y(z),z,z,z)+2*(diff(y(z), z))+y(z);

(8.1)

> local_basis(eq, y(z), 0);

(8.2)

> local_basis(eq, y(z), I);

(8.3)

Regular singular point:

> eq := z*diff(y(z),z,z,z)+2*y(z);

(8.4)

> local_basis(eq, y(z), 0);

(8.5)

17 • NumGfun[local_basis] - “canonical” local basis of the solution space of a linear ODE

Algebraic exponents and expansion points:

> eq := z^4*(diff(y(z), z$4))+2*z^3*(diff(y(z), z$3))-3*z^2*(diff(y(z), z,
 z))+3*z*(diff(y(z), z))+(z+1)*y(z);

(8.6)

> local_basis(eq, y(z), 0, 2);

(8.7)

> local_basis(eq, y(z), RootOf(_Z^3-1, 'index'=2));

(8.8)

See Also

gfun, NumGfun, evaldiffeq, DEtools[formal_sol]

18

NumGfun[plot_path] - display an analytic continuation
path

Calling Sequences

plot_path(eq, y(z), path)

plot_path(eq, y(z), path, 'rewrite')

Parameters

eq - linear differential equation with polynomial coefficients

y - name; function name

z - name; variable of the function y

path - list of complex numbers; analytic continuation path

Description

Plot the analytic continuation path path along with the singular points of eq.

With option rewrite, first subdivide path to plot an approximation of the analytic continuation path that evaldif-
feq would really use (by default) when asked to perform analytic continuation along that path.

Examples
> with(gfun:-NumGfun):

> gfun:-NumGfun:-plot_path((1+z^2)*diff(y(z),z,z)+y(z), y(z), [0, 1+I, 2*I],
 'rewrite');

See Also

NumGfun, evaldiffeq

	NumGfun User Manual
	Contents
	Overview of the gfun[NumGfun] Package
	Calling Sequence
	Description
	List of NumGfun Package Commands
	Informational Messages and Settings
	Examples
	Licence and Contact Information
	References
	See Also

	NumGfun[bound_diffeq] - majorant series for D-finite functions; NumGfun[bound_diffeq_tail] - bound the tails of the power series expansion of a D-finite function
	Calling Sequences
	Parameters
	Description
	Examples
	See Also

	NumGfun[bound_ratpoly] - majorant series for rational functions
	Calling Sequence
	Parameters
	Description
	Examples
	See Also

	NumGfun[bound_rec] - bound a sequence given by a recurrence relation; NumGfun[bound_rec_tail] - bound the tails of a series whose general term satisfies a recurrence relation
	Calling Sequences
	Parameters
	Description
	Examples
	See Also

	NumGfun[diffeqtoproc] - create a Maple procedure from a differential equation
	Calling Sequence
	Parameters
	Description
	Examples
	See Also

	NumGfun[dominant_root] - dominant root of a polynomial
	Calling Sequence
	Parameters
	Description
	Examples
	See Also

	NumGfun[evaldiffeq], NumGfun[analytic_continuation] - numerical evaluation of D-finite functions; NumGfun[transition_matrix] - numerical connection between regular points
	Calling Sequences
	Parameters
	Description
	Examples
	See Also

	NumGfun[local_basis] - “canonical” local basis of the solution space of a linear ODE
	Calling Sequence
	Parameters
	Description
	Examples
	See Also

	NumGfun[plot_path] - display an analytic continuation path
	Calling Sequences
	Parameters
	Description
	Examples
	See Also

