
Truncation Bounds for Differentially Finite Series

Marc Mezzarobba

Sorbonne Université, CNRS, Laboratoire d'informatique de Paris 6, LIP6, F-75005 Paris, France

Email: marc.mezzarobba@lip6.fr, marc@mezzarobba.net

Draft version of June 2, 2018

Abstract. We describe a �exible symbolic-numeric algorithm for computing bounds on
the tails of series solutions of linear di�erential equations with polynomial coe�cients. Such
bounds are useful in rigorous numerics, in particular in rigorous versions of the Taylor method
of numerical integration of ODEs an related algorithms. The focus of this work is on obtaining
tight bounds in practice at an acceptable computational cost, even for equations of high order
with coe�cients of large degree. Our algorithm fully covers the case of generalized series
expansions at regular singular points. We provide a complete implementation in SageMath
and use it to validate the method in practice.

Table of contents

1. Introduction . 1
2. Related work . 4
3. Notation and reminders . 5
4. A sketch of the method . 7
5. Majorant equations: the general case . 9
6. The main algorithm . 13
7. Bounds on rational sequences . 21
8. Numerical bounds . 25
9. Implementation and examples . 29
Acknowledgments . 35
Bibliography . 35

1. Introduction

1.1. Context. From the point of view of rigorous numerics, computing the sum of a power series

u(z)=
X
n=0

1

un z
n (1)

at a point � 2C of its disk of convergence means obtaining an arbitrarily tight enclosure of u(�)
given �. This reduces to computing, on the one hand, enclosures of the coe�cients un, and on the
other hand, a rigorous bound on the remainder, that is, a quantity B(� ;N) such that

juN :(�)j6B(� ;N) where uN :(z) =
X
n=N

1

un z
n: (2)

In order for the method to yield arbitrarily tight enclosures, the bound B(� ; N) should at least
tend to zero as N grows.

In the present work, we are interested in the case where the coe�cients un of the series (1) are
generated by a linear recurrence with polynomial coe�cients. In other words, there exist rational
functions b1; :::; bs over some sub�eld K � C such that, for large enough n, the coe�cient un is
given by

un= b1(n)un¡1+ ���+ bs(n)un¡s: (3)

Equivalently, the analytic function u(z) satis�es a linear ordinary di�erential equation (ODE) with
coe�cients in K(z),

ar(z) u
(r)(z)+ ���+ a1(z)u

0(z)+ a0(z)u(z)= 0: (4)

Functions with this property are called di�erentially �nite (D-�nite) or holonomic.

1

Under this assumption, computing the coe�cients and the partial sum given su�ciently many
initial values is not a problem in principle (though numerical stability, error analysis, or interval
blow-up issues may occur). The question we consider here is the following: assuming that the
series (1) is given by means of the di�erential equation (4) and an appropriate set of initial values,
how can we compute bounds of the form (2) on its remainders ?

Theoretical answers to this question have long been known. In fact, textbook proofs of existence
theorems for solutions of linear ODEs implicitly contain error bounds whose computation often
can be made algorithmic, even in the nonlinear case. More speci�cally, the basic idea of the very
method we use here can be traced back to Cauchy's 1842 memoir [5] on the �calcul des limites�,
or method of majorants as it is now called. (See Henrici [20, �9.2] or Hille [21, Sec. 2.4�2.6] for
modern presentations of the classical method of majorants.) Yet, the basic method is not enough,
by itself, to obtain tight bounds in practice at a reasonable computational cost.

1.2. Contribution. The goal of the present article is to describe a practical and versatile algo-
rithm for these bound computations. Our method fully covers the case of expansions at regular
singular points of the ODE (see Section 5.1 for reminders), including expansions in generalized
series with non-integer powers and logarithms. (It does not apply in the irregular case, even to
individual solutions that happen to be convergent.) It is designed to be easy to implement in a
symbolic-numeric setting using interval arithmetic, and to be applicable to fast evaluation algo-
rithms based on binary splitting and related techniques [7]. We provide a complete implementation
in the SageMath computer algebra system, and use it to assess the tightness of the bounds with
experiments on non-trivial examples.

To see more precisely what the algorithm does, consider �rst the following inequality that one
might write to bound the remainder of the exponential series with pen and paper:

����X
n>N

�n

n!

����= j� jNN ! X
n=0

N
N !

(N +n)!
j� jN 6 ej� j j� j

N

N !
: (5)

We are aiming for bounds of a similar shape: like this one, our bounds decompose into a factor
that mainly depends on the analytic behavior of the function of interest (actually, in our case, of
the general solution of the ODE), multiplied by one that is related to the �rst few neglected terms
of the series. Also like this one, they are parameterized by the truncation order and the evaluation
point; however, we focus on the evaluation algorithm giving the bound as a function of N and �
rather than insisting on readable formulas.

Example 1. As a �real-world� example of medium di�culty, consider the di�erential equation

z3 (z¡1) (z+2) (z+3) (z+6) (z+8) (3 z+4)2 P (4)(z)

+ (126 z9+ 2304 z8+ 15322 z7+ 46152 z6+ 61416 z5+ 15584 z4¡ 39168 z3¡ 27648 z2) P (3)(z)

+ (486 z8+ 7716 z7+ 44592 z6+ 119388 z5+ 151716 z4+ 66480 z3¡ 31488 z2¡ 32256 z) P 00(z)

+ (540 z7+ 7248 z6+ 35268 z5+ 80808 z4+ 91596 z3+ 44592 z2+ 2688 z¡ 4608) P 0(z)

+(108 z6+1176 z5+4584 z4+8424 z3+7584 z2+3072 z) P (z)= 0

for the lattice Green function of the four-dimensional face-centered cubic lattice [16, 26]. Make
the change of unknown function u(z) =P (1/2+ z) (as a Taylor method may do, cf. Section 2.2),
and let u(z) be a solution of the resulting �shifted� equation corresponding to small rational initial
values u(0); :::; u(4)(0) chosen at random. Figure 1 compares the truncation error after n terms
of the Taylor expansion of u(z) evaluated at � =1/4 (halfway from the singular points closest to
the origin, which are at �1/2 after the transformation) with the bound on the tail of this series
that our method produces given the last few known coe�cients before the truncation point. As
we could hope in view of the above discussion of the �shape� of our estimates, the overestimation
appears to be roughly constant for large n. (Under mild assumptions, it could actually be shown
to be O(logn) in the worst case.) On this example, it would cause us in this case to compute about
10% more terms than really necessary to reach an accuracy of 10¡50.

2 Truncation Bounds for Differentially Finite Series

0 20 40 60 80 100 120 140 160 180

terms

10−40

10−20

100

1020

error

Figure 1. Bounds computed by our implementation for the problem described in Example 1. The bottom
curve (in black in the color version) shows the actual error jun:(�)¡ u(�)j committed as a function of the
truncation order n, while the top curve (in blue) corresponds to the bound given by Algorithm 10 with `=5.
See Section 9 for details.

Internally, what the algorithm actually computes for �xed N is a majorant series (De�nition 3
below) of the remainder uN :(z). Given such a series, one readily deduces bounds on uN :(�) for
a given �, but also on related quantities like remainders of the derivative u0(z) or higher-order
remainders uN 0:(z), N 0>N . This last feature means that the method provides both �a priori� and
�a posteriori� bounds: the knowledge of the coe�cients u0; :::; uN¡1 (for large enough N) can be
used to bound uN 0:(�) for any N 0>N , and these bounds already tend to zero as N 0 increases, but
taking N closer to N 0 leads to tighter bounds, as illustrated on Figure 3 on page 28.

For the method to be of any interest, the majorant series we are computing need to be signi�-
cantly simpler than the series we are to bound. We seek hyperexponential majorant series, that is,
majorant series of the formX

n=0

1

ûn z
n= exp

Z
0

z

a(w) dw; a(z)2R(z);

or, equivalently, series that satisfy linear ODEs of the form (4) but of order r=1.
The algorithm to compute these hyperexponential majorant series is based on a novel combi-

nation of two classical ideas:

1. estimating the error in the solution of linear equations using residuals,

2. bounding the solutions of ODEs with analytic coe�cients by the method of majorants.

An analogy with an elementary situation might be helpful to see how this works. Consider the
linear system A x= b, for some invertible matrix A 2Cr�r. Suppose that we have computed an
approximation x~ of the exact solution x and we want to bound the approximation error kx~¡ xk.
Suppose, additionally, that we are given an M such that kA¡1k6M . Writing

kx~¡xk= kA¡1 (b~¡ b)k6M kb~¡ bk; (6)

all we need to conclude is an approximation of the residual b~¡ b, which is easy to obtain. In our
setting, the residuals can be computed from a small number of terms of the coe�cient sequence
of the series, while the method of majorants provides the required �bound on the inverse� of the
di�erential operator.

Continuing with the analogy, the more e�ort we spend computing M , the tighter we can make
the �nal bound. Nevertheless, even if the inequality kA¡1k6M is loose, as soon as the residual is
computed accurately enough, the bound (6) overestimates the actual error by a constant factor only
as x~ tends to x for �xed A. In the di�erential case as well, tighter bounds come at a higher cost
even for �xed N . Our algorithm contains additional parameters that can be adjusted to in�uence
the trade-o� between computational cost and accuracy. Thus, the same general algorithm can be
used to obtain simple but su�cient bounds in �easy� cases or, with more e�ort, better bounds in
�hard� cases where the simpler one are unusable.

Marc Mezzarobba 3

1.3. Outline. The rest of this article is organized as follows. Section 2 compares the approach
taken here with existing work and discusses some applications. Section 3 presents the notation
used in the sequel while recalling a few classical results. Section 4 sketches our algorithm and the
inequalities on which it relies, under some simplifying assumptions. The reader only interested
in the general idea should can stop there. The following sections are concerned with technical
details and proofs related to the bound computation algorithm. In Section 5, we prove a general
majorization theorem that covers expansions at regular singular points, laying the foundation for
the detailed description of our main algorithm in Section 6. We then consider the practical aspects
of computing certain intermediate bounds on sequences de�ned by rational functions in Section 7,
and the derivation of various kinds of concrete numerical bounds from the output of the main
algorithm in Section 8. Finally, Section 9 describes experiments that illustrate the quality of these
bounds and their behavior as a function of the accuracy parameters.

2. Related work
While articles directly comparable to the present one are relatively few, similar questions appear
naturally as sub-problems of various computational tasks. Somewhat arbitrarily, we group previous
work by context in two categories: the evaluation of classical functions, and the numerical solution
of ordinary di�erential equations.
2.1. Di�erentially �nite functions as special functions. An important application of the
summation of power series where tail bounds are needed is the rigorous multiple-precision evalua-
tion of special functions [3]. For a �xed function, it is usually not too hard to derive good ad hoc
bounds [32]. While bounds that cover wider classes of functions become more complicated as the
number of parameters increases, adequate tail bounds are available in the literature and used in
practice for common special functions depending on parameters. For example, Du and Yap [11,
Sec. 3] or Johansson [22, Sec. 4.1] present bounds that cover general hypergeometric functions.

From this perspective, our goal is to describe an algorithm for bound computations that applies
to the �general di�erentially �nite function� of a complex variable, viewed as a special function
parameterized by the complete coe�cient list of the di�erential equation (4). Van der Hoeven [42,
Sec. 2] [43, Sec. 2.4] [44, Sec. 3.5] already gave several such algorithms, some based, like ours, on
the method of majorants. Like the theoretical algorithms read between the lines of existence proofs
mentioned in the Introduction, van der Hoeven's algorithms su�er from overestimation issues that
make them unsatisfactory in practice. Our method can be seen as a re�nement of these ideas
yielding tighter bounds.

The present author already considered related tightness issues in an article with B. Salvy [30] on
asymptotically tight bounds on linear recurrence sequences, with some extensions (including a few
of the ideas developed in the present paper) in the author's doctoral thesis [28]. While the focus of
that article was not on tail of power series, the remainder bounds on tails of power series that came
as a corollary seemed to perform well in experiments with simple special functions. Unfortunately,
they later proved too pessimistic and costly to compute with more complicated equations. The
setting of the present work is di�erent in that we do not insist on asymptotic tightness, nor on
producing human-readable formulae, and focus instead on making the bounds as tight as possible
for realistic values of the parameters and easy to evaluate numerically.
2.2. Interval methods for ODEs. Directly summing the series (1) to compute u(�) only works
when � lies within its disk of convergence D. When that is not the case, an option is to evaluate
the function by �numerical analytic continuation�, that is, to �rst use (1) to compute the Taylor
expansion of u at some point �1 2D closer to the boundary, then use that series to compute the
expansion of u at a point �2, possibly outside of D, and so on until we reach �. Because u satis�es
the di�erential equation (4), it is enough at each step i to compute the �rst r derivatives of u at �i+1
using the Taylor expansion at �i, and the rest of the expansion follows from the di�erential equation.

We can also take a slightly di�erent perspective and view the evaluation algorithm as a numer-
ical ODE solver. Seen from this angle, what we just outlined is the numerical solution of (4) by a
Taylor method . Taylor methods are among the oldest numerical methods for ODEs. While often
considered too costly for machine-precision computations, they remain the methods of choice for
high precision and for interval computations [1, 33]. In addition, they can be made particularly
e�cient in the case of ODEs of the form (4) [7, Sec. 2�3], and the e�cient variants generalize to
deal with singular problems [45].

4 Truncation Bounds for Differentially Finite Series

Rigorous Taylor methods (not limited to the linear case) have attracted a lot of interest from
the �eld of Interval Analysis, starting with Moore's 1962 PhD thesis [31, Sec. 6]. Since a Taylor
method reduces the solution of an ODE to the summation of series expansions of (derivatives of)
solutions, the problem of bounding the remainders occurs naturally. Instructive overviews of the
ideas used in this context can be found in the literature [40, 33, 34]. A popular approach is to start
with a coarse enclosure of the solution and its �rst derivatives over the whole time step, obtained
by a �xed-point argument based for instance on Picard's iteration. One then deduces an enclosure
of the derivative of order N using the ODE, and a bound for the remainder of order N by Taylor's
formula. If, instead of values on a grid, one computes a polynomial approximation of the solution
over some domain, it is also possible to apply a �xed-point argument directly to a neighborhood
of this approximation in function space, by evaluating an integral form of the di�erential equation
in polynomial interval arithmetic (using Taylor models for instance). The way our algorithm uses
residuals bears some conceptual similarity to this last approach, but our method does not require
an explicit polynomial approximation of the solution as input.

Still in the context of Taylor methods, but closer in spirit to van der Hoeven's approach or
ours, Warne et al. [46] develop explicit majorants for solutions of nonlinear di�erential equations.
Neher [35, 36] considers the case of linear ODEs with analytic coe�cients and bounds the coe�-
cients of the local series expansions of the solution by geometric sequences, starting from bounds
of the same type on the coe�cients of the equation. In the special case of ordinary points, our
method might be described as a blend of Neher's approach, simpli�ed by the language of majorant
series, with elements of the �continuous approximation� strategy.

2.3. The regular singular case. To the best of our knowledge, the present work is the �rst
that directly applies to logarithmic solutions at regular singular points (with an early version of
some of the ideas in the author's dissertation [28, Sec. 6.4]). The other methods mentioned above
are limited to series solutions, often at ordinary points only, with the exception that van der
Hoeven [43, Sec. 3.3.2] sketches an adaptation to the case of logarithmic solutions of the earliest
of his algorithms for plain power series.

3. Notation and reminders

3.1. Formal power series. We denote by R[[z]] the ring of formal power series over R in
the variable z, and by R((z)) the ring of formal Laurent series. Given f 2 R((z)), we denote
by fn or [zn] f(z) the coe�cient of zn in f(z). As in equation (2), we also write fn:(z) for the
remainder

P
i>n fi z

i. More generally, f� is the coe�cient of z� in a generalized series
P

�2� f� z
�

indexed by ��C. In this context, Roman letters denote integers, while Greek coe�cient indices can
be arbitrary complex numbers. We sometimes identify expressions representing analytic functions
with their series expansions at the origin. Thus, for instance, [zn] (1¡� z)¡1 is the coe�cient of zn

in the Taylor expansion of (1¡�z)¡1 at 0, that is, �n.
We also consider polynomials in log(z) with formal power (or Laurent) series coe�cients.

The space R((z))[log z] of such expressions embeds in R[log z]((z)), and for f 2R((z))[log z], the
notations fn and fn: refer to the coe�cients of f viewed as an element of R[log z]((z)).

3.2. Di�erential equations and recurrences. We assume some familiarity with the clas-
sical theory of linear di�erential equations with analytic coe�cients, as described for instance in
Henrici's or Hille's books [19, 21], and with the basic properties of D-�nite formal power series, for
which we refer the reader to Stanley [41, Sec. 6.4] or Kauers and Paule [25]. In particular, we will
freely use the properties summarized below.

We usually write linear di�erential equations ar(z) y(r)(z)+ ���+a0 y(z)= q(z) in operator form,
i.e. as L � y = q where L is a linear operator acting on some space of functions of interest. When
the coe�cients ak are formal Laurent series, such an operator can be written as L = P (z; Dz),
that is, as a polynomial P (X;Y)2C((X))[Y] evaluated on the operators z: y 7! (w 7!w y(w)) that
multiplies a function by the identity function and the standard di�erentiation operator Dz: y 7! y 0.
Note that the operators z and Dz do not commute; one can bring the coe�cients ak(z) �to the
right� of Dz

k using the relation Dz z= zDz+1 deduced from Leibniz' rule. By abuse of notation,
we do not always make the di�erence between the operator P (z;Dz) and the polynomial P (X;Y).

Marc Mezzarobba 5

Similarly, recurrences bs(n) un+s+ ���+b0(n) un=vn with polynomial coe�cients can be written
P (n; Sn) �u= v where n: (uk) 7! (k uk) is the operator that multiplies a sequence by its index, Sn:
(un) 7! (un+1) is the shift operator, and P (X;Y)2C[X][Y]. The corresponding commutation rule
reads Sn n=(n+1) Sn. We typically consider bi-in�nite sequences (indexed by Z or �+Z, �2C),
so that we also have at our disposal the backward shift operator Sn

¡1: (un) 7! (un¡1).
In the di�erential case, when working in the neighborhood of the origin, it proves convenient

to write di�erential operators in terms of the Euler derivative de�ned by � = z Dz instead of
the standard derivative Dz. Any operator L= ar(z)Dz + ���+ a0(z) 2C((z))[Dz] can be written
L = L(z; �) with L = a~r(X) Y

r + ��� + a~0(X) 2C((X))[Y]. Conversely, an operator L 2C[z][Dz]
can be rewritten as an element of C[z][�] at the price of multiplying it on the left by a power of z.
This change does not a�ect the space of solutions of the equation L � y = 0. One can check that
the quotient ar(z) /a~(z) of the leading coe�cients with respect to Dz and to � is a power of z.
�Moving� the coe�cients of either form �to the right� of the di�erentiation operators leaves the
leading coe�cient unchanged.

It is classical that the coe�cients of a linear ODE with power series coe�cients obey a recur-
rence relation obtained by �changing � to n and z¡1 to Sn� in the equation. The precise result is
as follows, see Proposition 5 below for a sketch of a proof in a more general setting.

Proposition 2. Let L 2 C[[X]][Y]. A formal power series y 2 C[[z]] satis�es the di�erential
equation L(z; �) � y = 0 if and only if its coe�cient sequence (yn), extended with zeroes for
negative n, satis�es L(Sn

¡1; n) � (yn)n2Z=0.

Note that in general, the recurrence operator L(Sn
¡1;n) has in�nite order, but since yn vanishes

for n<0, each coe�cient of the sequence L(Sn
¡1;n) � (yn) only involves a �nite number of yn. When

L(z; �) has polynomial coe�cients, the corresponding recurrence has �nite order.

3.3. Majorant series. The language of majorant series o�ers a �exible framework to express
bounds on series solutions of di�erential equations.

De�nition 3. A formal power series f̂ 2 R+[[z]] is said to be a majorant series (sometimes a
majorizing series) of f 2C[[z]], if the coe�cients of f and f̂ satisfy jfnj6 f̂n for all n2N. More
generally, we say that f̂ 2R+[[z]] is a majorant series of

f(z)= f0(z)+ f1(z) log(z)+ ���+ fK¡1(z)
log(z)K¡1

(K ¡ 1)! 2C[[z]][log z]

if it is a majorant series of f0; :::; fk. In both cases, we write f(z)� f̂(z).

Series denoted with a hat in this article always have non-negative coe�cients, and f̂ is typically
some kind of bound on f , but not necessarily a majorant series in the sense of the above de�nition.

The following properties are classical and easy to check (see, e.g., Hille [21, Sec. 2.4]). Note
the assumption that f and g are plain power series: while convenient to state some results, the
extension to f 2C[[z]][log z] does not share all the nice properties of majorant series in the usual
sense.

Proposition 4. Let f ; g 2 C[[z]], f̂ ; ĝ 2 R+[[z]] be such that f � f̂ and g � ĝ. The following
assertions hold:

(a) f + g� f̂ + ĝ ; (b) f�j j f̂ for 2C; (c) fn:(z)� f̂n:(z) for n2N;

(d) f 0(z)� f̂
0
(z); (e)

�Z
0

z

f

�
�
�Z

0

z

f̂

�
; (f) f g� f̂ ĝ:

Additionally, the disk of convergence D̂ of f̂ is contained in that of f, and when ĝ0 2 D̂, we have
f(g(z))� f̂(ĝ(z)). In particular, jf(�)j is bounded by f̂(j� j) for all � 2 D̂.

6 Truncation Bounds for Differentially Finite Series

4. A sketch of the method

In this section, we outline how our bounds are obtained, in a simpli�ed setting and without giving
detailed algorithms. Our simpli�ed setting covers all solutions at ordinary (non-singular) points
of the di�erential equation, where Cauchy's theorem applies and all solutions are analytic. The
contents of this section may be enough for the reader only interested in the general idea of the
algorithm. Sections 5 to 7 essentially repeat the same algorithm in the general case, while adding
more detail and introducing re�nements that help obtain tighter bounds.

4.1. Truncated solutions and residuals. We start with a linear di�erential equation (4), with
rational coe�cients and right-hand side. As observed in Section 3.2, such an equation can always
be brought into the form

P (z; �) �u(z)= [�r pr(z)+ ���+ � p1(z) + p0(z)] �u(z) =0; pk2C[z]

without changing its solution space. The unusual choice of writing the coe�cients pk to the right
of �k is not essential, but will prove convenient later. We also assume without loss of generality
that the polynomials p0; :::; pr are globally coprime. Most importantly, we assume that the leading
coe�cient pr does not vanish at 0. This is the case when the origin is an ordinary point of (4)1,
i.e., when none of the fractions ak(z)/ar(z), 06 k <r, has a pole at 0.

Let u(z) be a solution of P (z; �) �u(z)= 0, and consider the truncation

u~(z)=
X
n=0

N¡1

un z
n

of the series u(z) to some large enough order N > 1. Our goal is to obtain an explicit majorant
series of the remainder u(z)¡u~(z). This remainder satis�es

P (z; �) � [u~(z)¡u(z)] =P (z; �) �u~(z)= q(z);

where q(z), the residual associated to the approximate solution u~(z), is an explicit, computable
polynomial. Because u~ is a truncation of an exact series solution, the residual q(z) has �small�
support: more precisely, it can be checked to be of the form q(z) = qN zN + ��� + qN+s z

N+s

where s= degzP (z; �).

4.2. The majorant equation. Setting

y(z) = pr(z) (u~(z)¡u(z)); (7)

we get an equation with rational function coe�cients

L(z; �) � y(z)=
�
�r+ ���+ �

p1(z)
pr(z)

+
p0(z)
pr(z)

�
� y(z)= q(z); (8)

in which we immediately rewrite L(z; �) as

L(z; �) =
X
j=0

1

Qj(�) z
j

by expanding pr(z)¡1 in power series and rearranging. Crucially, since pr(0)=/ 0, the polynomial Q0

has degree r, while the degree of Qj for j> 1 is at most r¡ 1.
By the correspondence of Proposition 2, the coe�cient sequence (yn)n2Z of y(z) then satis�es

L(Sn
¡1; n) � (yn)n2Z= [Q0(n)+Q1(n)Sn

¡1+ ���] � (yn)n2Z=(qn)n2Z;

that is,

Q0(n) yn= qn¡
X
j=1

1

Qj(n) yn¡j ; n2Z:

1. Assuming pr(0)=/ 0 also allows for a regular singular point at the origin, cf. Section 5.1. However, we restrict
ourselves in this section to power series solutions at regular singular points, leaving out a number of technicalities
related to non-integer exponents and logarithms.

Marc Mezzarobba 7

When n is large enough, Q0(n) does not vanish and yn is given recursively by

yn=
1
n

�
n qn
Q0(n)

¡
X
j=1

1
nQj(n)
Q0(n)

yn¡j

�
: (9)

Because of the degree constraints noted above, the quantities n qn/Q0(n) and nQj(n)/Q0(n) (for
�xed j) remain bounded as n grows. Assume for a moment that we have at our disposal bounds
q̂n and âj such that ���� n qnQ0(n)

����6 q̂n<1; n>n0; (10)����nQj(n)
Q0(n)

����6 âj<1; n>n0; j> 1; (11)

with âj=O(�j) for some � as j!1.
Equation (9) then leads to

jynj6
1
n

�
q̂j+

X
j=1

1

âj jyn¡j j
�
; n>n0:

Thus, if (ŷn)n2Z satis�es

ŷn=
1

n

�
q̂n+

X
j=1

1

âj ŷn¡j

�
; n>n0; (12)

and

jynj6 ŷn for all n<n0; (13)

then jynj is bounded by ŷn for all n.
Translating (12) back to a di�erential equation, we obtain

[�¡ â(z)] ŷ(z)= q̂(z) where â(z)=
X
j=1

1

âj zj: (14)

Because âj = O(�j), the power series â(z) is convergent. We call the equation (14) a majorant
equation associated with (8).

4.3. Majorant series for the remainders. The general solution of (14) reads

ŷ(z) =h(z)

�
c+

Z
0

zw¡1 q̂(w)
h(w)

dw

�
; ĥ(z)= exp

�Z
0

z

w¡1 â(w) dw

�
(15)

for an arbitrary constant c2C. Therefore, any ŷ(z) of this form such that (13) holds is a majorant
series for y(z).

It remains to choose the parameters q̂, â, and c in such a way that (10), (11), and (13) hold.
Recall that, in our context, y(z)= pr(z) (u~(z)¡u(z)) is a power series of valuation at least N > 1.
Provided N is large enough, we can assume n0 = N and take c = 0. Equation (13) is then
automatically satis�ed. Since at most s of the constraints (10) are nontrivial, it is not hard to
compute explicit values q̂n ful�lling these constraints. Knowing h(z), we can even choose q̂(z) as
a polynomial multiple2 of h(z), so that the integral in the expression of ŷ(z) reduces to an explicit
polynomial ĝ(z).

The case of (11) is slightly more involved, as, in appearance, it entails an in�nite number of
inequalities. However, the polynomials Qj stem from the power series expansions of the �nitely
many rational functions pk/pr of Eq. (8). By bounding the numerator and denominator of L(z; �)
separately, we can �nd a single rational function â(z) that satis�es all these inequalities; moreover,
we can arrange that â(z) have radius of convergence arbitrarily close to that of pr(z)¡1.

2. Since the power series h(z) has nonegative coe�cients and starts with h(0)=1, replacing any polynomial q̂(z)
computed from (10) alone by q̂(z)h(z) will do.

8 Truncation Bounds for Differentially Finite Series

A similar (but simpler) computation yields a polynomial p�(z) such that p�(z)¡1 is a majorant
series of pr(z)¡1 with the same condition on the radius of convergence. Putting everything together,
we obtain an explicit majorant series û(z) for the error u(z)¡u~(z), in the form

û(z)=
ŷ(z)
p�(z)

=
ĝ(z)
p�(z)

ĥ(z) =
ĝ(z)
p�(z)

exp
�Z

0

z

w¡1 â(w) dw

�
= rat1(z) exp

�Z
0

z

rat2

�
: (16)

As noted in Proposition 4, we have in particular ju(�) ¡ u~(�)j 6 û(j� j) for all � in the disk of
convergence of û(z).

Observe that, in (16), ĝ(z) can be chosen of valuation N , so that û(z) itself has valuation N .
Moreover, its coe�cients can be taken of roughly the same order of magnitude as those of the
�rst neglected terms of the series u(z). The radius of convergence of â(z) and p̂(z)¡1 can be made
arbitrarily close to the distance from the origin to the smallest nonzero singularity of the di�erential
equation (4) (or even equal to it, but manipulating this quantity exactly may be costly). In the
absence of apparent singularities, this distance is the local radius of convergence of a generic
solution of the di�erential equation. Thus, there is reason to hope that û(j� j) does not stray too
far from ju(�)¡u~(�)j as N and � vary.

5. Majorant equations: the general case

The key step of the reasoning outlined above is the construction in Section 4.2 of a �majorant
equation� of the inhomogeneous equation (8). Our goal is now to extend this construction to the
general case of solutions at regular singular points. To make them applicable to variants of the
algorithms adapted to other situations, the results are stated in slightly more general form than
actually needed in the sequel.

5.1. Regular singular points. We start with some reminders on regular singular points. Let
D= ar(z)Dz

r+ ���+ a1(z)Dz+ a0(z), where a0; :::; ar are analytic functions with no common zero.
Recall that � 2C is called a singular point of the operator D when ar(�)=0, and an ordinary point
otherwise.

At an ordinary point, by Cauchy's theorem, the equation D� y=0 admits r linearly independent
analytic solutions. If � is a singular point, analytic solutions de�ned on domains with � on their
boundary are in general not analytic at �. Regular singular points are a class of singular points that
share many similarities with ordinary points, starting with the existence of convergent (generalized)
series solutions.

A singular point � of D is called regular singular when, for all k, its multiplicity as a pole of
ak/ar is at most r¡k. We say that an operator D is regular at a point � (or that � is a regular point
of D) if � is either an ordinary point or a regular singular point of D. An operator written in the
form a~r(z) �

r+ ���+a~0(z) where at least one of a~0; :::; a~r has a nonzero constant coe�cient is regular
at the origin if and only if a~r(0) =/ 0. This is equivalent to saying that the univariate polynomial
Q0(�)= a~r(0) �

r+ ���+ a~0(0), called the indicial polynomial of the operator, has degree r.
When �2C is a regular point of D, the equationD� y=0 admits r linearly independent solutions

of the form

(z¡ �)� (f0(z) + f1(z) log(z¡ �)+ ���+ ft¡1(z) log(z¡ �)t¡1) (17)

(possibly with di�erent � and fi), where the fi are analytic at �. The possible � are exactly the
roots of Q0.

Formally at least, it is often convenient to rewrite (17) as a single seriesX
�2�+N

c�(w)w
� 2w�C[logw][[w]]; w= z¡ �:

We call expressions of this form logarithmic series, and refer to Henrici [20, �9.5] for a rigorous
presentation of their algebraic manipulation.

5.2. Recurrences on the coe�cients of solutions. The coe�cients of the logarithmic series
expansions of solutions of linear ODEs at regular points are related by systems of recurrence rela-
tions whose existence and explicit description go back to Frobenius [13] and He�ter [18, Kap. VIII].
Here we recall these results in a compact formalism [27, 28] close to that of Poole [39] which makes
them appear as direct generalizations of Proposition 2.

Marc Mezzarobba 9

Proposition 5. [39, 27] Let y(z); q(z)2 z�C[[z]][log z] (with �2C) be logarithmic series. Write

y(z)=
X

�2�+Z

X
k=0

1

y�;k z
� log(z)

k

k!
= z�

X
n=0

1 X
k=0

K¡1

y�+n;k z
n log(z)k

k!
;

where it is understood that y�+n;k=0 for n6 0 or k>K, and similarly for q(z). Let L(X; Y) be
an element of C[[X]][Y]. The di�erential equation

L(z; �) � y(z)= q(z)

holds if and only if the double sequences (y�;k); (q�;k)2C(�+Z)�N satisfy

L(S�
¡1; � +Sk) � (y�;k)�;k=(q�;k)�;k; (18)

where S� and Sk are the shift operators on C(�+Z)�N mapping a double sequence (u�;k) respectively
to (u�+1;k) and (u�;k+1).

Proof sketch. By calculating the action of the operators z and � on logarithmic monomials
z� log(z)k/k!, one checks that the coe�cient sequence of L(z; �) � y(z) is

L(S�
¡1; � +Sk) � (y�;k)�;k:

The result follows. �

Observe that, restricted to k> k0 where k0 is the largest index for which the u�;k and q�;k are
not all zero, (18) reduces to the univariate recurrence L(S�

¡1; �) � (y�;k0)�=(q�;k0)�. In particular,
if y(z) and q(z) are plain power series (k0=0, �=0), we get the formula of Proposition 2.

In the general case, we can translate the �implicit� equation (18) into a more explicit form as
follows. Consider again an operator L(z; �)2C[[z]][�], and, similar to what we did in Section 4.2,
write

L(z; �)=
X
j=0

1

Qj(�) z
j:

Note that Q0 coincides with the indicial polynomial introduced above. Let �(�) denote the mul-
tiplicity of a complex number � as a root of Q0. To simplify the notation somewhat, we limit
ourselves here to right-hand sides of the form Q0(�) � q(z).

Corollary 6. Assume that y(z); q(z)2 z�C[[z]][log z] satisfy L(z; �) � y=Q0(�) � q, and de�ne y�;k
and q�;k as in Proposition 5. Let �(n)> 0 be such that q�+n;k=0 for all k>�(n). Let �(n)> 0 be
such that y�;k=0 for k> �(0), and

�(n)>max
¡
�(n); �(n¡ 1)+ �(�+n)

�
; n> 1: (19)

Then, the coe�cients of y(z) satisfy y�+n;k=0 for all k> �(n), and are given by

y�+n;
�(�+n)+k

= q�+n;
�(�+n)+k

¡
X
j=1

n X
t=0

�(n¡j)¡1

[Xt]
Qj(�+n+X)

X¡�(�+n)Q0(�+n+X)
y�+n¡j;
k+t

(20)

for all n 2 Z and k 2N. (Both sums can be extended to range from the indicated lower index to
in�nity.)

Conversely, any solution (y�+n;k) of (20) with y�+n;k=0 for k>�(n) is the coe�cient sequence
of a solution of L(z; �) � y=Q0(�) � q.

In general, to satisfy (19) one can take

�(n)= max
06i6n

�
�0(i)+

X
j=i+1

n

�(�+ j)

�
where �0(i) =

�
�0(0)= �(0);
�0(i)=�(i); i> 1: (21)

10 Truncation Bounds for Differentially Finite Series

Proof. Consider the equation

L(S�
¡1; �+Sk) � (y�;k)=Q0(� +Sk) � (q�;k)

which results from Proposition 5. By extracting the sequence term of index � on both sides, we
get a relation between sequences y�¡j=(y�¡j;k)k2N and q�=(q�;k)k2N of a single index k:

Q0(� +Sk) � y�=Q0(�+Sk) � q�¡
X
j=1

1

Qj(�+Sk) � y�¡j: (22)

Let us �rst prove by induction that for all n, the sequence y� where �=�+n vanishes under the
action of Sk

�(n). This is the case by assumption for n6 0. Now assume that this holds true for all
n0<n. Write Q0(�+X)=X�(�)Q~0(X) with Q0(0)=/ 0. Note that �(n)> �(�) by de�nition of � .
Applying Sk

�(n)¡�(�) to (22) and using the induction hypothesis gives Q~0(Sk)Sk
�(n) � (y� ¡ q�)= 0.

Since �(n)>�(n), we have Sk
�(n) � q�=0, and hence Q~0(Sk) Sk

�(n) � y�=0. But, by assumption, y(z)
belongs to z�C[[z]][log z], so that Sk

�(n) � y� is zero almost everywhere. As Q0(0) =/ 0, the term of
index k is a linear combination of those of index k 0>k, therefore Sk

�(n) � y�=0.
Now, the polynomial X¡�(�) Q0(� + X) 2 C[X] is invertible in C[X] / hX�(n)¡�(�)i. Let

A�(X)2C[X] denote the canonical representative of its inverse, and write

A�(X)Q0(�+X) =X�(�)+U�(X)X
�(n):

Considering again (22) and applying A�(Sk), we get¡
Sk
�(�)

+U�(Sk)Sk
�(n)� � y�=¡Sk�(�)+U�(Sk)Sk

�(n)� � q� ¡X
j=1

1

A�(Sk)Qj(�+Sk) � y�¡j: (23)

We have seen that Sk
�(n) � y� =Sk

�(n) � q� =0, so that both terms involving U(Sk) vanish, and (23)
reduces to

Sk
�(�) � y�=Sk

�(�) � q� ¡
X
j=1

1

A�(Sk)Qj(�+Sk) � y�¡j:

Finally, for j > 1, the sequence Sk
�(n¡j) � y�¡j is zero, and A�(X)Qj(� +X) coincides at least to

the order �(n)¡ �(�)> �(n¡ j) with the series X�(�)Qj(�+X)/Q0(�+X). Equation (20) then
follows by extracting the coe�cient of index k.

If, conversely, (y�+n;k) is a solution of (20) such that Sk
�(n) � y�+n= 0 for all n, then it satis-

�es (23), and hence (22) because the sequences y� and q� have �nitely many nonzero coe�cients and
A�(0)=/ 0. Equation (22) is equivalent to L(S�

¡1; �+Sk) � (y�;k)=(q�;k), and to L(z; �) � y=Q0(�) � q
by Proposition 5. �

Remark 7. While the recurrence (20) giving the whole sequence y� �at once� is useful in the context
of bound computations, specializing (22) without �inverting� Q0 yields an alternative expression
of y�;�(�)+k, as a function of the y�¡j, j> 1, and the y�;k 0, k+16 k 0< �(�), which can be better
adapted to the iterative computation of the y�;k.

Suppose now that L(z; �) is regular at 0. Let

E = f(� ; k) : 06 k < �(�)g�C�N:

Thus E is a set of cardinality r. As already mentioned, it is well known that the homogeneous
equation L(z; �) � y = 0 has an r-dimensional vector space of convergent solutions spanned by
elements of z�C[[z]][log z] for Q0(�)=0. Corollary 6 suggests a speci�c choice of basis, giving rise
to a dual notion of �initial values�.

Corollary 8. A solution y(z) of L(z; �) � y=0 is uniquely determined by the vector of generalized
initial values (y�;k)(�;k)2E.

Marc Mezzarobba 11

Proof sketch. According to Corollary 6, the coe�cient y�;k of a solution y 2 z� C[[z]][log z] is
determined by the y�¡j;k, j > 1, as soon as k> �(n). In contrast, (20) imposes no constraint on
the y�;k with (� ; k)2E, and it is not too hard to see that taking y�0;k0=1 for a certain (�0; k0)2E
and y�;k = 0 for (� ; k) 2 Enf(�0; k0)g determines a solution (y�;k)�2�0+Z;k2N such that y�;k = 0
for k > �(�). The collection of the logarithmic series associated to these sequences for all choices
of (�0; k0) is a basis of the solution space of L(z; �). �

For each (�0; k0)2E, Corollary 6 applied with �= �0, �� 0 and �(0)= k0 provides a bound of
the form (21) on the degree with respect to log(z) of the coe�cients of the corresponding element
of this basis. One gets a uniform bound valid for all coe�cients of all solutions y 2 z�0C[[z]][log z]
by taking �=�0¡ 1, �� 0, �(0)=0, and letting n tend to in�nity.

5.3. The majorant equation. Equipped with these preliminaries, it is now easy to extend the
method of Section 4.2 to logarithmic series solutions. The next proposition, in some sense, reduces
the problem of bounding the solutions of arbitrary regular ODEs with polynomial coe�cients to
the case of �rst-order equations. Aiming for �rst-order majorant equations makes it possible to
write down the solutions explicitly while leaving us with enough freedom to match the analytic
behavior of solutions of the original equation. Other choices are possible though, and the method
could in principle be adapted to other forms of majorant equations.

We still consider an operator L(z; �)=
P

j>0Qj(�) z
j and a solution y(z) of

L(z; �) � y(z) =Q0(�) � q(z)

with y; q 2 z�C[[z]] for a �xed �2C, and de�ne �(�), E, y�;k and q�;k as above.

Proposition 9. Fix â(z); q̂(z)2 zR+[[z]], and let ŷ(z)2R[[z]] be a solution of

z ŷ 0(z)= â(z) ŷ(z)+ q̂(z): (24)

Assume, additionally, that the following assertions hold for a certain n0> 1:
(i) for all j> 1 and all n>n0,

n
X
t=0

�(n)¡1
�����[Xt]

Qj(�+n+X)

X¡�(�+n)Q0(�+n+X)

�����6 âj ; (25)

where �(n) is a non-decreasing sequence such that y�+n;k=0 for k> �(n),
(ii) for all n>n0 and all k> 0,

n jq�+n;�(�+n)+kj6 q̂n;

(iii) jy�+n;kj6 ŷn for 06n<n0 and for all k> 0,
(iv) jy�+n;kj6 ŷn for n>n0 and 06 k < �(�+n).

We then have the bound

jy�+n;kj6 ŷn

for all n; k> 0. In other words, ŷ(z) is a majorant series (in the extended sense) of z¡� y(z).

Note in particular that, when �(n) is zero, (25) can also be written
P

t=0
�(n)¡1 �� n

t!
f (t)(n)

�� 6 âj
where f(n) = (Qj/Q0)(�+n). When additionally �(n)= 1, it reduces to jn f(n)j6 âj.

Proof. We prove the result by induction on n. The inequality holds for n<n0 by assumption (iii).
Fix n> n0 (in particular, n> 0), and assume that jy�+n0;kj6 ŷn0 for all n0<n and k> 0. Denote
m = �(� + n). For k < m, the required inequality is given by assumption (iv). Now consider
y�+n;m+k for some k> 0. By Corollary 6 applied to the equation L(z; �) � y=Q0(�) � q, we have

y�+n;
m+k

= q�+n;
k+t

¡
X
j=1

1 X
t=0

�(n)¡1

[Xt]
Qj(�+n+X)

X¡mQ0(�+n+X)
� y�+n¡j;

k+t

:

12 Truncation Bounds for Differentially Finite Series

It follows that

��y�+n;
m+k

��6 ��q�+n;
m+k

��+X
j=1

1 X
t=0

�(n)¡1 ����[Xt]
Qj(�+n+X)

X¡mQ0(�+n+X)

���� � ��y�+n¡j;
k+t

��;
and hence, using assumptions (i)�(ii) and the induction hypothesis,

jy�+n;
m+k

j6 q̂n
n
+
X
j=1

1
âj
n
ŷn¡j: (26)

Extracting the coe�cient of zn on both sides of the di�erential equation (24) yields

n ŷn= q̂n+
X
j=1

1

ân ŷn¡j ; (27)

so that (26) becomes jy�+n;m+kj6 ŷn. This completes the induction step and the proof. �

The general solution of (24) reads

ŷ(z)= ĥ(z)

c+

Z
0

zw¡1 q̂(w)

ĥ(w)
dw

!
; ĥ(z) = exp

Z
0

z

w¡1 â(w) dw

for an arbitrary constant c. Observe that ĥ(z) has valuation zero, and hence ŷ(z) either has
valuation zero as well (if c=/ 0) or has the same valuation as q̂(z) (if c=0).

Conditions (i) and (ii) in Proposition 9 ensure that the solutions of (24) can be used to control
those of the equation L(z; �) � y= q. For the proposition to be applicable, â(z) and q̂(z) should be
chosen so that these conditions hold.

Conditions (iii) and (iv) depend on the speci�c solution y we are interested in. They express
that the bound holds �initially�, and most importantly for the generalized initial values described
in Corollary 8 (which are not determined by the �previous terms� of the series). In particular,
condition (iii) becomes trivial if n06 val(z¡� y(z)), where val(f) is the valuation of f viewed as
an element of C[log z][[z]]. As for condition (iv), it vanishes as soon as n0 is larger than all the
zeros n of Q0(� + n), or even than the zeros of Q0(� + n) corresponding to nonzero generalized
initial values in y(z).

Of special interest is the situation where both (iii) and (iv) are automatically satis�ed. This
happens in particular when the valuation of z¡� y(z) is larger than that of any h(z)2C((z)) such
that z� h(z) satis�es the homogeneous part L(z; �) � (z� h(z)) = 0 of the di�erential equation on y
(i.e., larger than max (f� ¡� : (�; k)2Eg\N)), and n0 is chosen between these two values.

Even in the general case, assuming â1> 0, it is always possible to adjust c or increase selected
coe�cients of q̂(z) so that (iii) and (iv) hold. Therefore, for any choice of n0, the other parameters
can be selected in such a way that Proposition 9 yields a nontrivial bound.

6. The main algorithm

Let us now go back to homogeneous equations with polynomial coe�cients, and specialize the
previous results to develop an algorithm that computes bounds on remainders of logarithmic series
solutions in this case. The description of the algorithm is split into two parts. The �rst part,
Algorithm 10, does not depend on the particular solution or truncation order. Roughly speaking,
it aims at satisfying condition (i) of Proposition 9, which yields what one might call a �pseudo-
inverse bound� on the di�erential operator. The second part, Algorithm 19, uses the result of the
�rst one to bound a speci�c remainder of a speci�c solution.

6.1. Setting. For the whole of this section, P (z; �) 2 K[z][�] denotes a di�erential operator,
assumed to be regular at the origin, over a �xed number �eld K�C. We consider a solution

u(z) = z�
X
n=0

1 X
k=0

K¡1

u�+n;k z
n log(z)k

k!
(28)

Marc Mezzarobba 13

of the homogeneous equation P (z; �) �u(z) =0, and a truncation

u~(z)= z�
X
n=0

N¡1 X
k=0

K¡1

u�+n;k z
n log(z)k

k!
(29)

of the logarithmic series expansion of u.
Our goal is to give an algorithm to bound the error u¡ u~, based on Proposition 9. Note that

a solution of P (z; �) can in general be a linear combination of solutions of the form (28) with
� belonging to di�erent cosets in C/Z. We limit ourselves here to a single �, and will if necessary
bound the remainders corresponding to exponents in other cosets �0+Z separately.

As in Section 4.2, we also set

L(z; �) =P (z; �) pr(z)
¡1=

X
j=0

1

Qj(�) z
j and y(z)= pr(z)

¡
u~(z)¡u(z)

�
where pr(z) is the leading coe�cient of P (z;�). Note that Q0(�), the indicial polynomial of L(z;�),
is monic, and that the indicial polynomial of P (z; �) is equal to pr(0)Q0(�). Let �(�) denote the
multiplicity of � as a root of Q0, and let E= f(� ; k) : 06 k < �(�)g as usual.

6.2. �Pseudo-inverse bounds� on di�erential operators. Algorithm 10 below corresponds
to the �rst part of the main bound computation algorithm.

Compared with the outline in Section 4, and beside supporting regular singular points, this
version of the algorithm provides more freedom in the choice of the rational function â(z), via the
input parameter `. The method of Section 4 corresponds to ` = 1. Increasing ` leads to tighter
bounds, at the price of increased computation time. Taking ` � s/2 often gives good results in
practice for evaluations far from the border of the disk of convergence of pr(z)¡1 (but see Section 9.4
for more on that).

Except for step 3, the algorithm can be run in interval arithmetic and will return �nite bounds
if all operations are performed with su�cient precision. Besides, the �exact� data needed at step 3,
that is the roots of Q0 in �+Z and their multiplicities, will typically be known beforehand by the
choice of �.

Algorithm 10. [Bound di�erential operator]

Input. A di�erential operator P (z; �)2K[z][�]. An algebraic number �. Integers `; n0> 0.

Output. A pair (p�; â)2R[z]�R(z) such that pr(z)¡1� p�(z)¡1 and â(z) satis�es condition (i)
of Proposition 9.

1. Compute operators

Q(z; �)=Q0(�)+ ���+Q`¡1(�) z
`¡1; U(z; �)=U0(�)+ ���+Us¡1(�) z

s¡1 2K[�][z]

such that

P (z; �)=Q(z; �) pr(z)+U(z; �) z`:

(To do so, expand the fractions pi/ pr in power series up to the order ` and set [�i] Qj to
[zj] (pi/pr). Then compute Uj as the coe�cient of z`+j in P (z; �)¡Q(z;�) pr(z). If working
in approximate arithmetic, force the coe�cient of �r in Q0 to the exact value 1 and the
coe�cients of �r in Q2; :::; Q`¡1; U0; :::; Us¡1 to 0.)

2. Compute lower bounds 0< �i6 j�ij on the roots �1; �2; ::: of pr(z), and a lower bound c on
the absolute value of its leading coe�cient. Set

p�(z)= c
Y
i

(�i¡ z)mi

where mi is the multiplicity of the root �i.

14 Truncation Bounds for Differentially Finite Series

3. Set �(n)� 1 if 0 is an ordinary point of P (z; �), and �(n) =
P

k=0
n

�(�+ n), where �(�) is
the multiplicity of � as a root of Q0, otherwise.

4. Denoting

F (f ; n)=n �
X
t=0

�(n)¡1
�����[Xt]

f(�+n+X)

X¡�(�+n)Q0(�+n+X)

�����; (30)

use Algorithm 25 and Remark 26 to compute bounds Q̂1; :::; Q̂`¡1; Û0; :::; Ûs¡1 such that

F (Qj ; n)6 Q̂j ; 16 j < `; and F (Uj ; n)6 Ûj ; 06 j < s;

for all n>n0. Let Q̂(z) = Q̂1 z+ ���+ Q̂`¡1 z
`¡1 and Û(z)= Û0+ ���+ Ûs¡1 z

s¡1.

5. Return (p�; â) where

â(z) = Q̂(z)+ z`
Û(z)

p�(z)
:

Remark 11. A simple strategy for step 2 (cf. Grégoire [15]) is to compute a single tight lower
bound � on the smallest root of pr by the method based on Grae�e iterations of Davenport
and Mignotte [9], and take p�(z) = c (� ¡ z)deg p. This method is fast and typically yields good
bounds in simple cases like standard special functions. Unsurprisingly, though, it can also lead to
large overestimations for operators with many singularities. At the other extreme, one can call a
(rigorous) numerical root �nder to obtain arbitrarily tight bounds. While, on paper, this option
complexi�es the algorithm a lot, very good implementations of complex root-�nding exist, so that
it works well in practice. It would also likely be feasible to extend the method of Davenport and
Mignotte to get better estimates of larger roots.

Proposition 12. Given an operator P (z; �)= pr(z) �r+ ���, regular at 0, Algorithm 10 returns a
pair consisting of a polynomial p�2R[z] such that pr(z)¡1� p�(z)¡1, and a rational function â(z)
with â(0) = 0 that satis�es condition (i) of Proposition 9 for any solution y 2 z� C[[z]][log z] of
P (z; �) � y=0.

Proof. At step 1, the fractions pk/ pr can be expanded in power series since pr(0)=/ 0. The operator
Q(z; �) de�ned by taking [�k]Qj= [z

k] (pk/pr) for 06 j <` then agrees with P (z; �) pr(z)¡1 up to
the order O(z`). In particular, it is monic with respect to �, so that [�r]Q0=1 and degQj6 r¡ 1
for j > 1. For the same reason, the di�erence P (z; �)¡ Q(z; �) pr is of the form U(z; �) z`, with
degUj6 r¡ 1 for all j since `> 1. The operator Q(z; �) pr has degree (with respect to z) at most
` ¡ 1 + s, and P (z; �) has degree at most s, hence the degree of their di�erence is strictly less
than `+ s, and the coe�cients we compute correctly represent U(z; �).

The polynomials Q0; :::; Q`¡1 computed here coincide with those de�ned before by the series
expansion L(z; �) =

P
jQj(�) zj. Additionally, the remaining coe�cients of the expansion are

related to U(z; �) by

X
j=0

1

Q`+j(Y)X
j=U(X; Y) pr(X)

¡1=
1

pr(X)

X
j=0

s¡1

Uj(Y)X
j: (31)

After step 2, we have for all i

1

z¡ �i
=

¡�i¡1

1¡ �i
¡1 z

� �i
¡1

1¡ �i
¡1 z

and hence pr(z)¡1� p�(z)¡1.
By Corollary 6, setting �(n) =

P
k=0
n

�(�+ n) at step 3 guarantees that u�+n;k = y�+n;k = 0
for all k> �(n). When the origin is an ordinary point of P (z; �), though, this generic choice only
gives �(n)=r for n>r¡1, but we can take �(n)=1 since all solutions of P (z; �) �u=0 lie in C[[z]].

Marc Mezzarobba 15

Let us now show that, when the bounds from steps 2 and 4 hold, the coe�cients âj of the
rational series

â(z)= Q̂(z)+ z`
Û(z)
p�(z)

satisfy condition (i) of Proposition 9, that is, F (Qj ; n)6 âj for all j> 1 and n>n0. The �rst `¡ 1
inequalities of step 4 say that this holds true for the initial coe�cients â1= Q̂1; :::; â`= Q̂`. The
last s inequalities translate intoX

j=0

s¡1

F (Uj ; n) z
j� Û(z); n>n0: (32)

According to (31), we have for �xed nX
j=0

1
Q`+j(�+n+X)

X¡�(�+n)Q0(�+n+X)
zj=

1
pr(z)

X
j=0

s¡1
Uj(�+n+X)

X¡�(�+n)Q0(�+n+X)
zj 2C(X)[z]:

Using the bound pr(z)
¡1� p�(z)¡1 from step 2 (and Proposition 4), it follows that

X
j=0

1
�����[Xt]

Q`+j(�+n+X)

X¡�(�+n)Q0(�+n+X)

����� zj� 1

p�(z)

X
j=0

s¡1
�����[Xt]

Uj(�+n+X)

X¡�(�+n)Q0(�+n+X)

����� zj
for all t> 0. By summing over 06 t < �(n) and multiplying by n, then applying (32), we get

X
j=0

1

F (Q`+j ; n) z
j� 1

p�(z)

X
j=0

s¡1

F (Uj ; n) z
j� Û(z)

p�(z)
; n>n0;

and hence �nally X
j=0

1

F (Q`+j ; n) z
j� â(z); n>n0: �

Remark 13. In our implementation, the code corresponding to Algorithm 10 actually does not
take n0 as input. Instead, the bounds Q̂j and Ûj of step 4 are functions of n0, and the algorithm
returns an object (called a Di�OpBound) that can then be evaluated at a given n0 to get the
pair (p�; â). The Di�OpBound objects serve to share part of the computation when one needs to
bound several tails of the same series�for example, to keep adding terms to the sum until the
bound becomes small enough�or tails of several solutions of the same equation.

Similarly, when Algorithm 10 is run on the same operator with increasing values of `, almost
all of the previous computations can be reused from one run to the next. We use that in the
implementation to provide re�nable bounds: Di�OpBound objects start o� as relatively coarse and
inexpensive bounds, and o�er a method to increase ` if the bounds turn out to be too pessimistic.
The switch from the �fast� strategy for step 2 discussed in Remark 11 to the more accurate one
works in the same way.

Remark 14. We also experimented with a variant of Algorithm 10 that performs a partial fraction
decomposition with respect to z of the operator instead of splitting it into a truncated series and
a rational remainder term, but did not manage to obtain better bounds using this approach.

It is not hard to compute a majorant series û(z) of u(z) from the output of this algorithm, as
illustrated by the following corollary (not used in the sequel).

Corollary 15. Let (p�; â) be the output of Algorithm 10 called on (L;�; `;n0). For any solution u(z)
of P (z; �) �u=0 lying in z�C[[z]][log z], there is a computable constant c2R such that

û(z)=
c

p�(z)
exp
Z
0

z¡
1+w¡1 â(w)

�
dw

16 Truncation Bounds for Differentially Finite Series

is a majorant series (in the extended sense) of u(z).

Proof. Apply Proposition 9 to the homogeneous equation L(z; �) � pr(z)u(z) =0 where L(z; �) =
P (z; �) pr(z)

¡1. By the previous proposition, Algorithm 10 provides a series â(z) satisfying the �rst
condition. The same is true a fortiori of â(z)+ z. In addition, the corresponding ŷ(z)= exp

R
0

z
(1+

w¡1 â(w)) dw has strictly positive coe�cients. The second condition is trivial for homogeneous
equations. We choose c large enough that jy�+n;kj6c ŷn for n<n0 or k<�(�+n), ful�lling the last
two constraints. Proposition 9 then implies y(z)� c ŷ(z), and hence u(z)= y(z)/pr(z)� û(z). �

The remainders of û(z) are majorants of the corresponding remainders of u(z) and, when û
converges at j� j, provide us with a sequence of bounds on the error ju(�) ¡ u~(�)j that tends to
zero as the truncation order increases. While the remainders of û(z) may not admit nice closed-
form expressions, it is not hard to extract reasonably good bounds on their values algorithmically,
as discussed in Mezzarobba and Salvy [30] or in Section 8.2 below, thus solving our problem in
principle. We can do better, though, by taking into account the residual associated to u(z).

6.3. Normalized residuals. Like with Corollary 6 and Proposition 9, instead of working with
the residual P (z; �) �u~(z), it is convenient to introduce the normalized residual q(z) de�ned by

P (z; �) �u~(z)=Q0(�) � q(z)

with the additional condition that qn;k = 0 for (n; k) 2 E. That the normalized residual is well
de�ned follows from the following lemma. When 0 is an ordinary point and N>r, or more generally
when u~ 2C[[z]] and Q0(n) =/ 0 for all n>N , the normalized residual is simply the residual with
the coe�cient of zn divided by Q0(n), cf. (10).

Lemma 16. Given f 2 z�C[[z]][log z] of degree at most K with respect to log(z), the di�erential
equation Q0(�) � q(z)= f(z) has a unique logarithmic series solution

q(z) =
X
�

X
k

q�;k z
� log(z)

k

k!

such that q�;k=0 for all (� ;k)2E. This solution belongs to z�C[[z]][log z], and the coe�cient q�;k
is zero for k < �(n) or k > �(n)+K.

Proof. This is a consequence of Proposition 5, applied to the operator Q0(�) (which has the same
associated set E as P (z; �)) and the right-hand side f(z). More precisely, the recurrence (18) for
� 2�+Z reduces in this case to Q0(� +Sk) � (q�;k)= (f�;k), that is,

c�(�) q�;�(�)+k= f�;k¡
X

`>�(�)

c` q�;k+` where Q0(�+X) = c0+ c1X + ���+ crX
r: (33)

For all �, this equation has a (unique) solution (q�;k)k with q�;k=0 outside of the interval

�(�)6 k < �(�) +max f` : f�;`=/ 0g= �(�)+K: (34)

The corresponding logarithmic series q(z) 2 z�C[[z]][log z] satis�es Q0(�) � q = f . By Corollary 8
applied to the homogeneous equation Q0(�) � q = 0, it is the only solution of Q0(�) � q = f with
q�;k=0 for all (�; k)2E. �

Now consider the special case of f(z)=P (z; �) �u~(z) used to de�ne the normalized residual.

Lemma 17. The logarithmic series q(z) of Lemma 16 corresponding to f(z)=P (z; �) �u~(z) is of
the form

q(z)=
X
n=N

N+s¡1 X
k=0

K

q�+n;�(�+n)+k z
�+n log(z)k

k!
; (35)

where s= degzP (z; �) and K is the largest power of log(z) appearing in u~(z).

Marc Mezzarobba 17

Proof. With the convention that the exponents are ordered by real part, call z-degree of a
logarithmic series the maximum exponent of z that appears, z-valuation the minimum one, and
log-degree the largest power of log(z) involved. The application of � to a term c z� log(z)k yields
a (possibly empty) sum of terms of the same z-degree and at most the same log-degree. Since
Q0(�) � q = L(z; �) � u~, where u~ has z-degree less than � + N , the z-degree of Q0(�) � q is less
than �+N +s. Since we also have Q0(�) � q=¡L(z; �) � (u¡u~), where u¡u~ is of z-valuation �+N
or more, Q0(�) � q has z-valuation at least �+N . The same bounds apply to q(z) due to (33) and
the requirement that q�;k=0 for (� ; k)2E. By a similar reasoning, the log-degree of Q0(�) � q is
at mostK. By Lemma 16, this implies that the q�;k can only be nonzero for �(�)6k6�(�)+K. �

When computing the series expansion of the solution u(z) using the recurrence from Proposi-
tion 2 or its generalization (20), the state one needs to maintain from one iteration to the next is
a vector (u�+n¡1; :::; u�+n¡s) where, in general, each entry may be a polynomial in log(z). The
following algorithm details how to compute the normalized residual at a given iteration from these
coe�cients only. For simplicity, we limit ourselves to the generic case where neither the truncation
index nor its next few shifts by integers are roots of the indicial polynomial. Note that the most
expensive part is typically the evaluation at � + j of the polynomial coe�cients of the recurrence
and their derivatives (step 2), but these coe�cients can be recycled from the iterative computation
of the u�;k. Additionally, fast algorithms dedicated to the evaluation of polynomials at regularly
spaced points [14, 2] are applicable.

Algorithm 18. [Normalized residual]

Input. An operator P (z; �)2K[z][�] of z-degree s. An algebraic number �. An integer N such
that the indicial polynomial Q0 of P (z; �) does not vanish at any of the points �+N; :::;
�+N + s¡ 1. The coe�cients u j;k= u�+N¡j;k as in (28) of a solution u(z), for 16 j 6 s
and k> 0.

Output. The coe�cients q j;k = q�+N+j;k, 0 6 j < s, k > 0, of the normalized residual (35)
associated to the truncation u~(z) of u(z) de�ned by (29).

1. Write P (Sn
¡1;n)= b0(n) +b1(n) Sn

¡1+ ���+bs(n) Sn¡s. Let c= pr(0) where pr(z) is the leading
coe�cient of P (z; �). Let K=maxjmax fk : u j;k=/ 0g (and K=1 if s=1).

2. Compute b i;j;k= bi
(k)(�+N + j)/k! for 06 i6 j < s, 06 k6K.

3. For j=0; :::; s¡ 1

a. For k=K;K ¡ 1; :::; 0, compute

v j;k =
X
j 0=1

s¡j X
k 0=0

K¡k

b j+j 0;j;k 0 u j 0;k+k 0;

q j;k =
1

b0;j;0

c v j;k¡

X
k 0=1

K¡k

b0;j;k 0 q j;k+k 0

!
:

4. Return q .

Proof. The algorithm amounts to the computation of the coe�cients (v�;k) of v(z)=P (z; �) �u(z)
by application of P (Sn

¡1;�+Sk) to (u�;k), interleaved with the solution of a triangular linear system
that expresses the relation Q(� +Sk) � (q�;k) = (v�;k). The table v is �lled with v j;k= v�+N+j;k,
using the relation

v�;k=
X
i=0

s X
k 0=0

K¡k 0
b(k

0)(�)
k!

u�¡i;k+k 0

with � = �+N ¡ j, and noting that u�¡i;�=0 when j 0= i¡ j 6 0. The factor c accounts for the
discrepancy between the monic indicial polynomial Q0 used in the de�nition of the normalized
residual and the leading coe�cient of the recurrence: it satis�es b0(n)=c Q0(n), so that the equation
Q(� +Sk) � (q�;k)= (v�;k) translates into

P
k 0 c

¡1 b 0;j;k 0 q j;k+k 0= v j;k. �

18 Truncation Bounds for Differentially Finite Series

6.4. Bounds on tails of di�erentially �nite series. In terms of L(z; �) and y(z), the nor-
malized residual we just de�ned satis�es L(z; �) � y = Q0(�) � q. Given suitable bounds on the
coe�cients of L, Proposition 9 applies and provides a bound on y(z). If (p̂; â) is the pair computed
by Algorithm 10, it follows that the truncation error satis�es

u(z)¡u~(z)� ĥ(z)
p�(z)

Z
0

zw¡1 q̂(w)

ĥ(w)
dw; ĥ(z)= exp

Z
0

z

w¡1 â(w) dw

where q̂(z) is a power series satisfying condition (ii) of Proposition 9. The obvious choice is to take
q̂(z) as a polynomial with the same support as z¡� q(z). However, choosing q̂(z) as a polynomial
multiple of ĥ(z) instead makes the integral explicitly computable. Combined with a parameter
choice that render the last two conditions of Proposition 9 trivial (cf. the discussion at the end of
Section 5.3), this leads to the following algorithm.

Algorithm 19. [Tail majorant]

Input. An operator L 2 K[z][Dz]. An algebraic number �. An integer ` > 1. A truncation
order N > 1. The coe�cients u�+N¡1; u�+N¡2; :::2K[log z] of a solution u(z) of L � u= 0
(the last s coe�cients, where s is de�ned in step 1, are enough).

Output. A majorant series û(z) of u(z)¡u~(z), where u~(z) is the order-N truncation of u(z).

1. Rewrite L in the form P (z; �) with � on the left: compute coe�cients p0; :::; pr2K[z] such
that z� L=�r pr(z)+ ���+� p1(z)+ p0 where �2Z is such that pr(0)=/ 0. Let s=maxkdeg pk.

2. Compute the normalized residual

q(z) = z�+N
X
k=0

K¡1

f [k](z)
log(z)k

k!
; f [k]2C[z];

associated to u~(z).

3. Call Algorithm 10 on (P (z; �); �; `; n0) with n0=N to compute a pair (p�; â). Let

ĥ(z)= exp
Z
0

z

w¡1 â(w) dw:

4. Compute a polynomial f̂(z)= f̂0+ f̂1 z+ ���+ f̂s z
s with f̂i> (N + i)maxk jfi

[k]j.

5. Compute the �rst s+1 coe�cients of the Taylor expansion of ĥ(z)¡1. Deduce a polynomial
g(z)= gN z

N+ ���+ gN+s z
N+s2R[z] such thatZ
0

z

wN¡1
f̂(w)

ĥ(w)
dw= g(z)+O(zN+s+1):

De�ne ĝ(z)= ĝN z
N+ ���+ ĝN+s z

N+s by ĝn=max (0; gn).

6. Return the symbolic expression

û(z)=
ĝ(z)
p�(z)

ĥ(z):

In our implementation, the series ĥ(z) (actually ĥ(z)/p�(z)) and û(z) are represented by objects
of type �hyperexponential majorant� that encode formal power series of the form

z�
F (z)

G(z)
exp
�Z

0

z

H(w) dw

�
; � 2N; F ;G2R[z]; H 2R(z);

where the polynomial G(z) is represented in factored form and H(z) is an unevaluated sum of
rational functions, also with factored denominators. With the algorithm of this paper, the sum
reduces to two terms (a polynomial part related to Q̂(z) in Algorithm 10, and a rational part of
denominator pr(z)), but variants like that of Remark 14 can introduce additional terms. This
representation makes it easy to extract numerical bounds from the majorant series, as discussed
in Section 8 below.

Marc Mezzarobba 19

Proposition 20. Consider the generalized initial values (u�;k)(�;k)2E associated to u, and assume
that N is at least equal to the largest index of a nonzero initial value, that is,

N >max fn2N : 9k; (�+n; k)2E ^ u�+n;k=/ 0g: (36)

Then Algorithm 19 returns an expression representing a series û(z)2R+[[z]] such that

u(z)¡u~(z)� û(z):

Proof. Step 1 of the algorithm consists in rewriting the equation L �u=0 into an equivalent one
of a special form. We have seen in Section 3.2 that this can always be done, and in Section 5.1
that, due to the assumption that 0 is a regular point, the resulting pr does not vanish at 0. By
Lemmas 16 and 17, the normalized residual q(z) is well de�ned and the polynomials f [k] have degree
bounded by s. Additionally, the rational function returned by Algorithm 10 satis�es â(0)= 0 (by
Proposition 12), so that ĥ(z) is analytic at the origin. Thus, at step 5, the computation of g(z)
amounts to that of a Taylor expansion of â(z) (a rational function with no pole at the origin)
followed by routine operations on truncated formal power series. Therefore, the algorithm makes
sense and runs without error.

To see that the result satis�es the claim, let us check that Proposition 9 is applicable to â(z)
and q̂(z) = z ĝ 0(z) ĥ(z), where ĝ(z) is the polynomial computed at step 5. By Proposition 12, the
series â(z) satis�es condition (i). By de�nition of g(z), we have

g 0(z) ĥ(z)= zN¡1 f̂(z)+O(zN+s):

Since f̂(z) has degree s, the �rst N + s coe�cients of g 0(z) ĥ(z) are exactly the coe�cients of
the polynomial zN¡1 f̂(z). While these coe�cients are non-negative, this may not be true of the
remaining coe�cients of g 0(z) ĥ(z). However, replacing g(z) by ĝ(z) yields a product ĝ 0(z) ĥ(z)
with

max
¡
0; [zn] (g 0(z) ĥ(z))

�
6 [zn] (ĝ 0(z) ĥ(z)); n> 0:

We thus have

zN¡1 f̂(z)� ĝ 0(z) ĥ(z);

and hence zN f̂(z)� q̂(z). In combination with the inequalities resulting from steps 2 and 4, this
implies

(N + i) jq�+N+i;kj6 f̂i6 q̂N+i; i; k> 0;

and condition (ii) is satis�ed. Because N > n0 and y(z) = pr(z) y(z), we have y�+n;k = 0 for all
n<n0, hence condition (iii) holds. Similarly, condition (iv) holds due to the assumption (36).

Therefore, the relation y(z)� ŷ(z) holds for any solution of z ŷ 0(z) = â(z) ŷ(z) + q̂(z), and in
particular for

ŷ(z)= ĥ(z)

Z
0

zw¡1 q̂(w)

ĥ(w)
dw= ĥ(z) ĝ(z):

It follows that u(z)¡u~(z) = pr(z)
¡1 y(z)� p�(z) ŷ(z). �

Remark 21. Algorithm 19 is but one way to compute remainder bounds based on Proposition 9.
It admits many variants that use the additional �exibility of the framework of the previous section.

1. If N is replaced by n0 in (36), the proof of Proposition 20 applies verbatim to any N >n0
instead of only N = n0. One can thus compute majorants corresponding to multiple trun-
cation orders without running Algorithm 10 again, or even specializing again the majorant
sequence of Remark 13.

2. It may also happen that (36) fails to hold: typically, if the indicial polynomial Q0 has a
root at �+n1 for some very large n1, one may want to truncate the series expansion of u(z)
at an order N � n1 even if one of the generalized initial values at �+ n1 is nonzero. One
can modify Algorithm 19 with a more general choice of ŷ(z), as discussed at the end of
Section 5.3, so as to cover this case.

20 Truncation Bounds for Differentially Finite Series

3. There is no need to run the algorithm several times to bound the tails of several solutions of
the same equation (corresponding to the same �) truncated at the same order: it is enough
to compute each of the corresponding normalized residuals, and modify step 4 to take them
all into account. In particular, using the fact that derivatives of majorants are majorants of
derivatives, bounding the remainder of a fundamental matrix of the equation at an ordinary
point only requires a single call to Algorithm 19.

4. It would be possible to choose the quantity �(n) needed at step 4 of Algorithm 10 in a slightly
tighter way, based on (21) and the observed degree of the normalized residual after step 2
of Algorithm 19. One would then recover the special case of ordinary points hard-coded in
Algorithm 10. However, proceeding this way complicates the reuse of computations when
n0 varies, for little bene�t except in terms of tightness.

5. Step 5 of Algorithm 19 is optional: taking ĝ(z) =
R
0

z
wN¡1f̂(w) dw also yields a valid, if

coarser, bound. Indeed, we have f̂ (z)� f̂(z) ĥ(z) since ĥ0=1, meaning that we can replace
f̂(z) by f̂(z) ĥ(z) without contradicting the inequality from step 4, but then the integral at
step 5 reduces to

R
0

z
wN¡1f̂(w) dw.

7. Bounds on rational sequences

The main algorithm presented in the previous section crucially relies on bounds on quantities of
the form supn>n0 jf(n)j, where f(n) is a rational function with complex coe�cients. While it is
not hard to come up with such bounds (isolating the poles and local extrema of f yields optimal
bounds), their computation can easily become costly in practice. This section describes an approach
that we found to be a good trade-o� between speed and quality for an implementation based on
interval arithmetic.

7.1. The generic case. When n is large (larger than any of the poles of the rational function f
of interest, at least), a simple and e�ective way to bound jf(n)j for n>n0 is to perform an interval
evaluation.

More precisely, if f(n)= p(n)/ q(n), write f(x¡1)=x� p�(x)/ q�(x), where p�; q� are the reciprocal
polynomials of p; q, and � > 0. The evaluation of this expression on x = [0; 1 /n0] in interval
arithmetic yields a bound on f(n) valid for all n > n0. Moreover, this bound converges to the
same limit as jf(n)j as n tends to in�nity. Note that the rewriting step is essential, as illustrated
by the example of f(n)= (n¡ 1)/n, whose naive interval evaluation on [10;1] gives [0;1], to be
compared with [0.9; 1] after rewriting the expression.

A big advantage of this approach is that it generalizes naturally to the simultaneous com-
putation of bounds on several derivatives of f(n), as required by step 4 of Algorithm 10. The
generalization is formalized as Algorithm 22 below. Given f = p/q 2C(n) and T > 1, we denote

F [T](f ; n)=
X
t=0

T¡1 ����n ["t]� p(n+ ")
q(n+ ")

�����: (37)

This de�nition already covers the bounds on rational sequences needed in the main algorithm when
n0 is larger than the roots of the indicial polynomial. Algorithm 22 also accepts a parameter Z
that can make it �ignore� some of the poles of f , and will be useful when we turn to the remaining
(non-generic) cases.

In this algorithm and the next one, boldface letters stand for intervals or polynomials with real
or complex interval coe�cients. All interval operations are extended in a natural way to handle
intervals containing 1. An expression like �compute g(") = '(") + O("T)� means �compute a
polynomial g of degree at most T ¡1 whose coe�cients are interval enclosures of the �rst T Taylor
coe�cients of '(")�. The computation reduces to routine operations on truncated power series.

Algorithm 22. [Bound rational sequence, generic case]

Input. A monic polynomial q 2C[n] of degree d, a polynomial p2C[n] of degree strictly less
than d, an integer T > 1, a �nite set of �exceptions� Z �N, a starting index n02NnZ.

Output. A bound M 2R+[f1g such that F [T](p/ q; n)6M for all n>n0 with n2/ Z.
1. Set x to an interval containing [0; n0

¡1] (if n0=0, set x= [0;1]).

Marc Mezzarobba 21

2. Compute i(")= (1+x ")¡1+O("T) and j(")=x i(").

3. Compute p�(")= p�(j("))+O("T) where p�(n)=nd¡1 p(n¡1).

4. Compute q�(")= q�(j("))+O("T) where q�(n)=nd q(n¡1).

5. [Optional; alternatively, set = 1.] Use Lemma 23 below to compute a lower bound �> 0
on jn¡d q(n)j valid for all n2N>n0nZ. Let be a complex interval of radius >�¡1 centered
at 0. Multiply q�(") by , and replace the constant coe�cient of the result by 1.

6. Compute s(")=s0+s1 "+ ���+sT¡1 "T¡1=
¡
i(")/q�(")

�
p�(")+O("T), with the convention

that 12 s0 if the constant coe�cient of q� contains zero.

7. Return the right endpoint of the interval (js0j+ js1j+ ���+ jsT¡1j).

Before proving that this algorithm works as stated, let us discuss the step marked as optional.
Without this step, the algorithm is a direct generalization of the method for T =1 sketched above.
It returns an in�nite bound as soon as q has a real root in [n0;1), and only gives satisfying results
when n0 is su�ciently larger than the largest real root. Note that this may be enough in the context
of solutions of di�erential equations at ordinary points, since in this case the only denominator that
arises in that case is n (n¡ 1) ��� (n¡ r + 1), where r is the order of the equation. In the general
case, the next lemma o�ers a simple way to mitigate the issue.

Lemma 23. Let q 2C[n] be a monic polynomial of degree d, and let n0> 1. Given �2C, denote

�(�)=
�
j�j2/Re(�)

�
; b�(n)=

8>><>>:
min

�����1¡ �
�(�)

����; ����1¡ �
�(�)¡ 1

�����; n<�(�);���1¡ �

n

���; n>�(�):

Then, for all n>n0, we have

jq(n)j>nd
Y
�

jb�(n0)j

where the product is over the multi-set of roots � of q with Re�> 0.

Proof. Write q(n) = nd
Q

� j1 ¡ �/nj. When Re � 6 0, the sequence j1 ¡ �/nj decreases to 1.
Otherwise, it �rst decreases to a minimum (which may be 0 if � is an integer) and then increases
to 1. In the latter case, the minimum is reached for either n=�(�) or n= �(�)¡ 1. �

Note that this lower bound can be somewhat expensive to compute compared to the rest of the
algorithm. For this reason, our implementation actually decides whether to run the optional step
based on the accuracy of the interval q�(0) at the beginning of step 5.

In practice, there is no need for the check that Re�>0 to be exact, since false positives can only
decrease the result. Also, rough enclosures of the roots of q are su�cient: one can add more terms
to the minimum in the de�nition of b�(n) if the enclosure of � does not uniquely determine �(�).
Similarly, given Z �N, one obtains a lower bound valid for n> n0 with n 2/ Z by replacing �(�)
by the adjacent integers when �2Z.

Proposition 24. Algorithm 25 returns a quantity M 2R+[f1g such that F [T](p/ q; n)6M for
all n>n0 with n2/ Z. The version that includes the optional step returns a �nite bound as soon as
Z contains all the roots of q in N>n0 (provided that the working precision for interval operations
is large enough).

Proof. When n0 = 0, the algorithm returns 1. Assume n0 > 1. Fix n > n0 such that q(n) =/ 0,
and let x = n¡1. The quantities p� and q� de�ned in the algorithm are polynomials in " (since
d= deg q > deg p) with complex coe�cients. Letting

j(")=
1

n+ "
=

x
1+x "

2R[["]];

22 Truncation Bounds for Differentially Finite Series

they satisfy

n f(n+ ")=n
p(n+ ")
q(n+ ")

=n j(")
p�(j("))
q�(j("))

=
1

1+x "
p�(j("))
q�(j("))

:

Since q(n)=/ 0, one can compute the �rst T Taylor coe�cients of n f(n+") by evaluating the right-
hand side of this expression in C[["]] and truncating the intermediate results to the order T after
each operation. Without step 5, this is exactly what the algorithm does (in interval arithmetic) to
compute s("). Since the interval x contains n¡1, we have n ["t] f(n+ ")2 st for 06 t <T .

Now consider the case where we include step 5. Suppose additionally that n 2/ Z, and let
c=nd q�(n¡1) =n¡d q(n). Note that c=/ 0. After step 5, the modi�ed polynomial q�(") satis�es

c¡1 ["t]
q�(j("))

j(")d
2 ["t] q�("); 06 t <T :

Indeed, the relation for t=0 reduces to 1= 1, while for t > 0, it follows from the fact that jcj> �
and hence c¡12 . Therefore, we have c n ["t] f(n+ ")2 st after step 6.

In both cases, we conclude that

F [T](p/ q; n)=
X
t=0

T¡1

n ["t] f(n+ ")2 (js0j+ js1j+ ���+ jsT¡1j)

for all n 2 N>n0nZ such that q(n) =/ 0. If q(n) vanishes for some n 2 N>n0nZ, then the algo-
rithm returns in�nity (either because the constant coe�cient of q� contains zero or because is
unbounded), hence the bound holds for all n 2 N>n0nZ. Otherwise, we can take � > 0, and the
result is �nite. �

7.2. The general case. In its general form, Algorithm 10 requires bounds for n>n0 on sequences
similar to F [T](f ;n), but with a number of summands T that varies with n and a special handling
of poles of the denominator. Both modi�cations to the formula can be summed up by introducing
as an additional parameter the sequence of multiplicities of the poles that we wish to treat in a
special way. Thus, given a rational function f = p/ q as before and a sequence m(n) with �nitely
many nonzero terms, let us de�ne

F (n)=
X
t=0

�(n)¡1
�����n ["t]

p(n+ ")

"¡m(n) q(n+ ")

!����� where �(n) =
X
k=0

n

m(k): (38)

The quantities that we have to bound at step 4 of Algorithm 10 are of this form3. The following
algorithm computes the associated bounds.

Algorithm 25. [Bound rational sequence, general case]

Input. Polynomials p and q, a set Z, and an integer n02NnZ as in Algorithm 22. A �multi-
plicity� function m:N!N with m(n) =0 for n2/ Z.

Output. A bound M 2R+ [f1g such that the function F :N!R+ [f1g de�ned by (38)
satis�es F (n)6M for all n>n0.

1. [Precomputation, independent of n0.]
Set S(1) =0. Then, for n2Z, in decreasing order:

a. Compute f(")= p(n+ ")/("¡m(n) q(n+ "))+O("�(n)). Deduce a bound b1>F (n).

b. If n+ 1 2/ Z, compute b2 > sup fF [�(n)](p/ q; k) : k > n+ 1; k 2/ Zg (cf. (37)) using
Algorithm 22, and set b=max (b1; b2). Otherwise, set b= b1.

c. If b is larger than the maximum of the S(k) de�ned so far, set S(n) = b.

2. Find the smallest n>n0 on which S is de�ned. Set Mexn=S(n).

3. There is no harm in also replacing �(�) by zero in (30) when we take �(n)=1 because the origin is an ordinary
point: doing so only makes the �rst few terms of the bound in�nite.

Marc Mezzarobba 23

0 5 10 15 20 25

n0

100

102

104

106

108

1010
ref. value
bound
Mgen (coarse)
Mgen (tight)
Mexn

{S(n)}

Figure 2. Bounds and intermediate values computed by Algorithm 25 called with p=(n2+n+3) (n¡15)2,
q=n (n¡3/2)2 (n¡ 5)2 (n¡10), Z= f0;5;10g, and m(0)=1, m(5)=2, m(10)=1. The main bound (solid
curve) and the intermediate values marked with H include the optional step of Algorithm 22. The values
of Mgen without the optional step, shown for comparison when �nite, are marked with N.

3. If n02Z, then return Mexn.

4. Compute Mgen> sup fF [�(n0)](p/ q; n) :n>n0; n2/ Zg using Algorithm 22.

5. Return max (Mexn;Mgen).

Remark 26. Algorithms 22 and 25 immediately extend to vectors (p1/ q; :::; p`/ q) of rational
functions with the same denominator. A large part of the computation can be shared between the
entries.

Proposition 27. Given parameters that de�ne a sequence F (n) of the form (38) and an integer n0,
Algorithm 25 returns a bound M such that supn>n0 F (n) 6M. If, for every integer n > n0, the
multiplicity of n as a zero of q is at most m(n) (and the working precision is large enough), then
M is �nite.

Proof. First observe that, due to step 1c, the values S(n) de�ned at step 1 are decreasing (in the
sense that S(m)< S(n) when both are de�ned and m> n). We extend S to a staircase function
de�ned onN[f1g by setting the unde�ned S(n) to the smallest values that make S non-increasing
(see Figure 2).

Let us prove by induction that

n2Z)
¡
8k>n; F (k)6S(n)

�
: (39)

This is true for n>maxZ. Then �x n2Z and assume (39) holds for larger indices. Step 1a of the
algorithm ensures that S(n)> F (n). For n < k <min (N>n\Z), we have F (k) = F [�(n)](p/ q; k),
hence S(n)> F (k) by the correction of Algorithm 22 (Proposition 24). Finally, by the induction
hypothesis, we also have S(n)>F (k) for larger k.

The e�ect of steps 2 to 5 is to construct a quantity

M >

8<: max
¡
S(n0); sup

n>n0;n2/Z
F [�(n0)](p/q; n)

�
; n02/ Z;

S(n0); n02Z:

When n02Z, the inequality supn>n0F (n)6M holds by (39). When n02/ Z, as with steps 1b�1c,
we have M >S(n0)>S(n00)>S(n) for n>n00 , where n00 =minN>n0\Z, and M >F [�(n0)](p/ q; n)
for n06n<n0

0 . It follows that M >F (n) for all n>n0. �

24 Truncation Bounds for Differentially Finite Series

8. Numerical bounds

The algorithms developed at this stage bound the tails of di�erentially �nite series by hyper-
exponential majorant series. We have seen that a series û(z) with u(z) � û(z) encodes bounds
ju(j)(�)j 6 û(j)(j� j) on the values of u and all its derivatives. Yet, in order to use the majorants
in a concrete setting, we still have to explain how to e�ectively evaluate the û(j)(j� j). Let us �rst
consider the details of this operation, and then outline two other ways�appropriate for di�erent
settings�of deriving numerical tail bounds from the majorant series.

8.1. Values. When j is large, it is essential for performance to compute the values of the deriv-
atives by working with truncated power series (or another similar compact representation) rather
than by naive symbolic di�erentiation. The process is laid out in Algorithm 28 below, which
takes as input a hyperexponential majorant represented in the form discussed after Algorithm 19.
Despite the heavy notation, the algorithm is mostly straightforward, the only subtlety being that
we bound sub-expressions of the form

R
(f / g) by (

R
f)/ g to avoid computing integrals of rational

functions. As in the previous section, boldface letters stand for intervals or polynomials with
interval coe�cients, and �compute '(")+O("m)� means �compute a Taylor expansion with interval
coe�cients of '("), truncated to the order m, using power series operations�.

Algorithm 28. [Numerical remainder bounds]

Input. Parameters � 2N, p̂; q�; f̂0; g�0; :::; f̂n¡1; g�n¡12R[z] de�ning a series

û(z) = z�
p̂(z)

q�(z)
exp

 Z
0

zX
i=0

n¡1
f̂i(w)

g�i(w)
dw

!
2R+[[z]]:

An evaluation point x> 0. A di�erentiation order m.

Output. Non-negative reals M0; :::;Mm¡1.

1. Let z(") =x+ ", where " is an indeterminate. Initialize J(") to 0.

2. For i=0; :::; n¡ 1 :

a. Compute the antiderivative Fi(z)=
R
0

z
f̂i(w) dw.

b. Compute Fi(z("))/ g�i(z("))+O("m) and add it to J(").

3. Compute S(")= z(")� p̂(z(")) exp (J("))/q�(z("))+O("m).

4. Return the right bounds of the intervals j! ["j]S("), 06 j <m.

Proposition 29. In Algorithm 28, suppose that for all i, the series ûi(z) and v�i(z)¡1 have non-
negative coe�cients. Then the values Mj returned by the algorithms are bounds for the derivatives
of û(z) at x, with 06 û(j)(x)6Mj, 06 j <m.

Proof. Steps 1 to 3 compute the Taylor expansion to the order m of

z�
p̂(z)
q�(z)

exp

 X
i=0

n¡1
1

g�i(z)

Z
0

z

f̂i(w) dw

!
:

An integration by parts yieldsZ
0

z f̂i(w)
g�i(w)

dw=
1

g�(z)

Z
0

z

f̂i(w) dw¡
Z
0

z
�
1
g�i

�0
(w1)

Z
0

w1

f̂i(w2) dw2dw1;

where the term following the minus sign is a series with non-negative coe�cients, so that we haveZ
0

z f̂i(w)
g�i(w)

dw� 1
g�(z)

Z
0

z

f̂i(w) dw:

Marc Mezzarobba 25

It follows that the coe�cients of S(") are enclosures of upper bounds on the Taylor coe�cients
of û(j� j+ "). �

When u(z) is a plain power series and un:(z)� û(z), the above algorithm yields bounds on
j(un:)(j)(�)j, that is, on values of the successive derivatives of the tail. This is what one typically
needs in applications, yet, since (ûn:)0(z) =N ûn z

n¡1+ (û0)n:(z), the same quantities also bound
the tails of the derivatives.

If u(z) = z�
P

k fk(z) log(z)k / k! is a logarithmic series, though, we only get bounds on
derivatives of tails of the components fk(z). To deduce bounds that apply to tails of the generalized
series expansion of u(z) itself, it is usually best to form the expansion of fk(j� j+ ") with respect
to " and compute (j� j+ ")�

P
k fk(j� j+ ") log(j� j + ")k/k! in power series arithmetic, similar to

what Algorithm 28 does.

8.2. �A priori� bounds. A small drawback of the technique discussed above is that it requires
knowing the last few coe�cients un¡1; :::; un¡s just before the truncation point in order to bound
the tail un:(�) of a series u(z). Thus, the results are in a sense a posteriori bounds, that cannot be
used to decide with certainty where to truncate the series before even starting the computation of
the coe�cients. (It is of course possible to �guess� a plausible truncation order based on asymptotic
considerations, or to compute the required coe�cients at low precision before running the full-
precision computation.)

If however, given a majorant û(z) of un0: obtained by the previous methods for some n0, we
can obtain su�ciently tight bounds on the values of the remainders ûn1:(j� j) for n1>n0, then we
have a way of bounding the higher-order remainders un1:(�) without computing all the coe�cients
up to n1. We now adapt to the setting of this paper a technique of Mezzarobba and Salvy [30] for
doing so, based on the classical saddle point method in asymptotics. The idea is that for suitably
chosen �, the bound (40) below is relatively tight.

Lemma 30. Let v̂(z) be a power series with non-negative coe�cients. Fix real numbers �>x> 0
within the disk of convergence of v̂. For all n 2N, the series expansion at x of the remainder of
order n of v̂(z) is bounded as

v̂n:(x+ ")�
�
x
�

�n
v̂
¡
� (1+x¡1 ")

�
: (40)

In particular, we have v̂n:(x)6 (x/�)n v̂(�).

Proof. Write

v̂n:(x z) =
X
k=0

1

v̂n+kx
n+k zn+k=

�
x
�

�nX
k=0

1

v̂n+k x
k �n zn+k:

Since �>x, we have

v̂n:(x z)�
�
x
�

�n
v̂n:(� z)�

�
x
�

�n
v̂(� z):

The result follows by substituting 1+x¡1 " for z. �

For simplicity, let us focus on series û(z) of the shape returned by Algorithm 19, viz.,

û(z)= zn0 v̂(z) = zn0 b̂(z) exp
Z
0

z

w¡1 â(w) dw; â; b̂ 2C(z)n (41)

and assume that â(z) and b̂(z) are not both constant4. Additionally, we limit ourselves in the
analysis to the bound (x/�)n v̂(�) on the value of the remainder, leaving to the reader the case of
derivatives.

4. There is no loss in generality in doing so. Besides, the only case that would lead to majorant series breaking
the assumption is that of di�erential equations of the form P (�) � u=0, whose solutions are linear combinations of
a �nite number of generalized monomials.

26 Truncation Bounds for Differentially Finite Series

Let �� be the pole of â(z) b̂(z) closest to the origin, with the convention that ��=1 if both â(z)
and b̂(z) are polynomials. As â(z) and b̂(z) have non-negative coe�cients, �� is necessarily real and
positive. Besides, in our setting, the denominatorsSe of â(z) and b̂(z) divide the polynomial p�(z)
computed by Algorithm 10, hence �� can be taken arbitrarily close to the modulus of the singularity
of the di�erential equation closest to the origin. The next lemma shows that, in (40), it is possible
to choose �= �n close to ��, so that (x/�n)n decreases fast, without letting v̂(�n) grow too large.
In particular, the resulting sequence of bounds tends to zero at least exponentially fast, with the
same exponential rate x/�� as the coe�cients of v̂n in the case ��<1.

Lemma 31. Fix x< �� and c> 0.

� If �� is �nite, let m02N be its multiplicity as a pole of â(z) and b̂(z). Let m=max (1;m0).
For n> cm, de�ne �n= �� (1¡ c n¡1/m).

� If ��=1, let d= deg â(z) and �n= c n1/d.

Then, as n!1, the following asymptotic bounds hold:

� (x/�n)
n v̂(�n) = (x/�

�)nnO(1) if ��<1 and m=1,

� (x/�n)
n v̂(�n) = (x/�

�)n exp
¡
O(n1¡1/m)

�
if ��<1 and m> 2,

� (x/�n)
n v̂(�n) =n¡n/d eO(n) if ��=1.

Proof. Assume �rst that �� is �nite. As � tends to ��, we have

Z
0

�

w¡1 â(w) dw=

8><>:
O
¡
(��¡ �)¡m0+1

�
; m0> 2;

O(¡log (��¡ �)); m0=1;
O(1); m0=0;

and thus, since ��¡ �n= c ��n¡1/m,

exp
Z
0

�n

w¡1 â(w) dw=

8><>:
exp

¡
O
¡
n1¡1/m0

��
; m0> 2;

nO(1); m0=1;
O(1); m0=0;

n!1:

The analogous estimates when ��=1 readZ
0

�

w¡1 â(w) dw=O(�d) (�!1); exp
Z
0

�n

w¡1 â(w) dw= expO(n) (n!1):

In both cases, the other factor of v̂(�n) satis�es b̂(�n) = nO(1). Finally, the prefactor (x/ �n)n is
bounded as

(x/�n)
n=

(
(x/��)n (1¡ c n¡1/m)¡n= exp

¡
O(n1¡1/m)

�
; ��<1;

O(xnn¡n/d); ��=1:

The result follows by combining these estimates. �

While, asymptotically, these formulas yield tight bounds for any �xed c, the actual values of
(x/�n)

n v̂(�n) for �nite n are quite sensitive to that of �n, and the bounds implied by the previous
lemma are typically very poor for moderate n. We could, of course, derive more precise asymptotic
estimates of the optimal choice of �n as a function of n, but in practice it is best to minimize
Fn(�) = (x/ �)n v̂(�) numerically�not necessarily in a rigorous way. Note that, for large n, the
function Fn a unique local minimum5 on [0; ��), so that simple numerical methods work well for
this purpose.

5. Indeed, its logarithmic derivative reads Fn0(�)/Fn(�) = �¡1 (G(�) ¡ n) where G(�) = � b̂
0
(�)/ b̂(�) + â(�).

Since the numerator of b̂(z) has non-negative coe�cients, G(�) is a rational function without poles on [0; ��), and
hence a continuous function with �nitely many local extrema. Additionally, it satis�es G(0) = 0 and G(�)!+1
as �! ��. Therefore, for large n, the equation G(�) =n has exactly one solution.

Marc Mezzarobba 27

0 25 50 75 100 125 150

10−50

10−40

10−30

10−20

10−10

100

0 100 200 300 400 500

10−150

10−100

10−50

100

Figure 3. �A priori� vs. �a posteriori� bounds on the remainders un:(�) of a series u(z), as a function of the
truncation order n. Left plot: u(z) = arctan(z) at �=1/2. Right plot: u(z) and � as in Example 1 (p. 2).

On each plot, the bottommost curve (in black) is the actual truncation error. The next curve from bottom
to top is the �a posteriori� bound on un:(�) given by Algorithm 10 with `= 10 and Algorithm 19, based on
the coe�cients u0; :::; un¡1 of u(z). It connects the starting points of the remaining curves, which represent,
for several values of n0, the bounds on un:(�) for n>n0 computed from the same majorant series using only
the coe�cients u0; :::; un0¡1, as described in Section 8.2.

See Section 9 for more information on the implementation.

To sum up, we can use the following algorithm to compute bounds on ûn:(x) and its �rst m
derivatives given a series û(z) of the form (41): �rst call Algorithm 28 on û(z) and x. If n6 n0,
return its result. Otherwise, de�ne �� as above, and search for a value � 2 [x; ��) that minimizes
log ((x/ �)n f(�)), where f(�) is the value computed by Algorithm 28 called with m = 1. Then
compute j! ["j] S("), 06 j <m, where S(") = (x+ ")n0 (x/�)n v̂(� (1 + x¡1 ")) +O("m). Compare
with the bounds computed at the �rst step, and return the better one. (This last step is not strictly
necessary, since (40) reduces to the trivial bound v̂n:(x+ ")� v̂(x+ ") when �=x, but it can help
if the numerical computation of � is inaccurate.)

Proposition 32. If u(z)� û(z) and n> n0, the algorithm outlined above yields valid bounds on
un:(�); :::; (un:)

(m¡1)(�) for all � such that j� j 6 x. Provided that the numerical method used to
choose � is accurate enough, the bound on un:(�) tends to zero at least exponentially fast as n grows.

Figure 3 shows the results of a simple implementation of this strategy. While the sub-exponen-
tial overhead promised by Lemma 31 can be observed in practice, at least for the simpler of the
equations, we also see that these �a priori� bounds are much more pessimistic than the �a posteriori�
ones in slightly more complicated cases.

8.3. Remainders of Laplace transforms. Another downside of our framework is that hyper-
exponential majorant series are not expressive enough to capture the remainder asymptotics of
solutions of arbitrary di�erential equations with polynomial coe�cients. For example, the Airy
function satis�es Ai(z)=exp (�' z3/2+O(log z)) as z!1 in a generic direction ', and [zn]Ai(z)=
O(n!¡2/3), but the best majorants our method can express are of the form û(z) = ĝ(z) exp(� z3),
ĝ(z) 2Q[z], with un of the order of n!¡1/3. More generally, for any rational �> 0, it is not hard
to �nd an equation whose solutions are entire functions u(z) of order � or higher, and hence have
tails un:(�) bounded by n!¡1/� eO(n) (� �xed). In contrast, hyperexponential entire functions are
necessarily of integer order, with tails that decrease like n!1/d eO(n) where d2N>0. Besides, even
when the fastest-growing solution of the di�erential equation we are considering is of integer order,
there is no guarantee that the hyperexponential majorant will respect that order.

This overestimation is not too much of an issue for the �a posteriori� error bounds discussed in
the main part of this paper because, even if the choice of ĥ(z) in Section 6.4 is not as tight as it
could, the factor derived from the residual has the �right� asymptotics with respect to n. For the �a
priori� bounds of the previous subsection this argument does not apply, and they can be far from
matching the actual speed of convergence of the solutions, even in non-degenerate cases.

28 Truncation Bounds for Differentially Finite Series

A possible remedy (essentially a streamlined version of a similar idea proposed in Mezzarobba
and Salvy [30], to which we refer for more information) is to re-scale the solutions of the original
equation by a generalized Laplace transformX

n=0

1

un z
n 7!

X
n=0

1

�(n)un z
n; �(n)= q

p

q
n
¡

�
1+

n
q

�p
This transformation can be performed algorithmically at the level of di�erential operators, and it
is possible to choose p; q in such a way that the resulting operator has at least one nonzero �nite
singular point, while remaining regular at the origin. One can then compute majorant series of
the solutions of the transformed equation, and obtain bounds on the remainders of the original
solutions by the following variant of Lemma 30. (We have not experimented with this technique.)

Lemma 33. Let û(z) =
P

n>0 ûn z
n2R+[[z]], and let v̂(z) =

P
n>0 �(n) ûn z

n for integers p2Z,
q 2N>0 chosen so that v̂(z) has a nonzero radius of convergence. Let � > 0 lie within the disk of
convergence of v̂(z). Then, for all x and n such that 06x6 � (n+1)p/q, we have the bound

ûn:(x)6
1

�(n)

�
x
�

�n
v̂(�):

Proof. Write

ûn:(x)=
X
k=0

1
v̂n+k

�(n+ k)
xn+k=

1
�(n)

�
x
�

�nX
k=0

1
�(n)

�(n+ k)
�nxk:

Since the function t 7! ¡(t + a) / ¡(t) is non-decreasing for fixed a, and using Gautschi's
inequality [10, Sec. 5.6.4], we have

¡(1+n/q)
¡(1+ (n+ k)/q)

6
�

¡(1+n/ q)
¡(1+ (n+1)/ q)

�
k

6
�

q
n+1

�
k/q

and hence
�(n)

�(n+ k)
= q

¡p

q
k
�

¡(1+n/q)
¡(1+ (n+ k)/ q)

�p
6 (n+1)¡(p/q)k6

�
�
x

�
k
:

The result follows. �

In practice, when applying this lemma, x is given, n must be large enough that x6 �� (n+1)p/q
hold, and � is to be chosen as a function of n as in the previous subsection. For large x, Lemma 33
starts being applicable when n�xp/q, which typically matches the position where the terms of the
series u(z) �start converging� (cf. Section 9.2).

9. Implementation and examples

9.1. Implementation. We have implemented the algorithms of this paper in ore_algebra [24,
29], a library for working with Ore polynomials in the SageMath (Sage) computer algebra system.
Among the features of Sage and the many external libraries on which it is based, our code relies
in an essential way on Arb [23], which provides all necessary basic operations on intervals and
truncated power series with interval coe�cients. The implementation also makes use of PARI
for complex root �nding, and of ore_algebra itself for basic arithmetic with di�erential and
recurrence operators. The operations on rational numbers and exact polynomials mainly come
from GMP/MPIR, Flint and Singular.

The ore_algebra package is available from https://github.com/mkauers/ore_algebra/
under the GNU General Public License (version 2 or later). The code for computing error bounds
can be found in the �le src/ore_algebra/analytic/bounds.py of the source tree. We performed
the experiments described below using the git revision dd88e8d5 under Sage 8.2.

Except when otherwise noted, we run the full version of the algorithm described in this paper,
that is, the combination of Algorithms 10, 19, 25, and 28, including their optional steps, and using
PARI's root �nder at step 2 of Algorithm 10. Numerical coe�cients are represented by real or
complex intervals almost everywhere, with a �xed precision of 53 bits.

In examples involving generalized series expansions at singularities, the displayed truncation
error and error bound correspond to the complete logarithmic series, including the non-analytic
factors.

Marc Mezzarobba 29

https://github.com/mkauers/ore_algebra/
https://github.com/mkauers/ore_algebra/
https://github.com/mkauers/ore_algebra/
https://github.com/mkauers/ore_algebra/
https://github.com/mkauers/ore_algebra/
https://github.com/mkauers/ore_algebra/
https://github.com/mkauers/ore_algebra/
https://github.com/mkauers/ore_algebra/
https://github.com/mkauers/ore_algebra/
https://github.com/mkauers/ore_algebra/
https://github.com/mkauers/ore_algebra/
https://github.com/mkauers/ore_algebra/
https://github.com/mkauers/ore_algebra/
https://github.com/mkauers/ore_algebra/

0 5 10

10−9

10−6

10−3

100
exp(1/2)

0 10 20 30

10−9

10−6

10−3

100

103

exp(−5)

0 10 20 30

10−9

10−6

10−3

100

103

exp(5)

0 10 20 30

10−9

10−6

10−3

100
arctan(1/2)

0 20 40 60 80

10−9

10−6

10−3

100

arctan(3/4)

0 100 200 300

10−10

100

1010

arctan(7/8)

0 5 10 15 20 25

10−9

10−6

10−3

100
erf(1)

0 10 20 30 40 50

10−9

10−6

10−3

100

103
erf(2)

0 200 400 600

100

1020

1040

1060

1080

erf(10)

0 5 10 15 20 25

10−9

10−6

10−3

100

Ai(2)

0 20 40 60 80 100

10−10

100

1010

1020
Ai(10)

0 20 40 60 80 100

10−10

100

1010

1020
Bi(10)

0 5 10

10−9

10−6

10−3

100

M2,
√

3(1)

0 10 20 30 40 50

10−10

100

1010

1020

M2,
√

3(20)

0 10 20 30 40 50

10−10

100

1010

1020

W2,
√

3(20)− cM2,
√

3

Figure 4. Truncation errors of series expansions at the origin of classical functions (see Section 9.2). The two
curves on each plot are the actual truncation error and the bound, as a function of the truncation order. All
bounds were computed using Algorithm 10 with `=3. In the last row, M�;� andW�;� denote the Whittaker
functions, and c=�/

¡
sin(��) ¡(�) ¡(¡ 3

p
¡ 3/2)

�
where �=1+2 3

p
.

30 Truncation Bounds for Differentially Finite Series

Remark 34. Testing the implementation for correctness is a signi�cant issue, as the �nal trun-
cation bounds are likely to be valid even if the code is wrong, due to overestimation. Without a
complete formal proof of the implementation, it is very hard to be certain that it is fully correct.
Nevertheless, the fact that our bounds are close to optimal in simple cases is of great help in
catching bugs. We further limit the risks of missing issues hidden by overestimations by testing
not only the �nal bounds, but also various intermediate results. In our experience, plausible but
incorrect changes to the bound computation algorithm tend to be caught by the test suite.

9.2. Elementary and special functions. Figure 4 illustrates the behavior of the algorithm
in a variety of �easy� model cases. We use very simple di�erential equations satis�ed by classical
elementary and special functions and focus on the evaluation of their solutions at low precision.

Each row shows three examples of solutions of the same equation, from top to bottom

u0(z)¡u(z)= 0; (z2+1)u00(z)+ 2 z u0(z)= 0; u00(z) +2 z u0(z) =0;

u00(z)¡ z u(z)= 0; 4 z2 u00(z)¡ (z2¡ 8 z+ 11)u(z)= 0:

For each of these equations, we consider the series expansion at the origin of one or several solutions
(respectively the exponential, the arctangent, the error function, the Airy functions Ai and Bi,
and certain linear combination of Whittaker functions of parameters � = 2, � = 3

p
), evaluated

at di�erent points � of their disk of convergence. The �rst four equations are ordinary at the
origin. The last one�while otherwise quite similar to the Airy equation�is regular singular,
with irrational exponents 1/2� 3

p
. The local expansion of M�;� lies in z1/2¡ 3

p
C[[z]], and the

constant c is chosen so that W�;�¡ cM�;�2 z1/2+ 3
p
2C[[z]].

We plot the truncation error jun:(�)j and the corresponding bound on a logarithmic scale,
as a function of the number of terms n, until they become smaller than 10¡10. The left column
corresponds to evaluations at points � where the series u(�) converges nicely�halfway from the
circle of convergence in the case of arctan(z), and at points where the magnitude of the terms
of u(�) start decreasing early in the case of entire functions. For such simple equations, the
experiments con�rm that the bounds are very tight, in spite of the very low accuracy target (10¡10

or less) and the moderate value of `.
Though a bit larger, the overestimation remains moderate in the two other columns. We will

come back to the case of arctan(7/8) later. We can observe that when the terms exhibit a �hump�
before the series really starts converging, our bounds tend to overestimate the true error by a factor
comparable to the height of the hump. A heuristic explanation is that frequently, in the majorant
series û(z)= p�(z)¡1 ĝ(z) ĥ(z) that we compute for un:(z), the coe�cients of ĝ(z) are roughly of the
order of junj, while ĥ(z) is not too far from

P
j>0 juj j z

j. Thus, the value of the majorant series

at x= j� j> 0 is about
P

j>0 juj j x
j �maxj>0 (juj j xj) times larger than jun:(�)j � junj xn. This

overestimation has a limited impact in applications, because one typically tries to avoid humps
in the coe�cients in the �rst place�for example, in a Taylor method, by adjusting the step size.
Nevertheless, it would be interesting to �nd a way of avoiding it.

9.3. �Real-world� examples. Next, we consider a family of larger examples borrowed from an
application. Other families of �interesting� operators, as well as tools to produce plots similar to
the ones in this paper, are available in the ore_algebra source tree.

Figure 5 shows remainder bounds for solutions at the origin of the di�erential equations for
lattice Green functions of face-centered hypercubic lattices discovered (heuristically or rigorously)
by several authors over the last decade [16, 4, 26, 48, 17]. In particular, the case d=4 corresponds
to the operator of Example 1, but without the shift from the neighborhood of 0 to that of 1/2. The
other operators can be found on Ch. Koutschan's web page6; here we limit ourselves to collecting
some statistics about their size:

dimension d 4 5 6 7 8 9 10 11
order r 4 5 8 11 14 18 22 27
max. coe�cient (w.r.t. Dz) degree 10 17 43 68 126 169 300 409
max. polynomial coe�cient size (bits) 18 50 143 273 654 959 1907 2888

6. http://www.koutschan.de/data/fcc1/

Marc Mezzarobba 31

http://www.koutschan.de/data/fcc1/
http://www.koutschan.de/data/fcc1/
http://www.koutschan.de/data/fcc1/
http://www.koutschan.de/data/fcc1/
http://www.koutschan.de/data/fcc1/
http://www.koutschan.de/data/fcc1/
http://www.koutschan.de/data/fcc1/
http://www.koutschan.de/data/fcc1/
http://www.koutschan.de/data/fcc1/
http://www.koutschan.de/data/fcc1/
http://www.koutschan.de/data/fcc1/
http://www.koutschan.de/data/fcc1/
http://www.koutschan.de/data/fcc1/
http://www.koutschan.de/data/fcc1/
http://www.koutschan.de/data/fcc1/
http://www.koutschan.de/data/fcc1/

0 100 200 300

10−100

10−80

10−60

10−40

10−20

100
d = 4 (` = 5)

0 20 40 60 80 100

10−100

10−80

10−60

10−40

10−20

100
d = 5 (` = 8)

0 20 40 60 80

10−100

10−80

10−60

10−40

10−20

100
d = 6 (` = 20)

0 20 40 60

10−100

10−80

10−60

10−40

10−20

100
d = 7 (` = 32)

0 20 40

10−100

10−80

10−60

10−40

10−20

100

d = 8 (` = 59)

0 10 20 30 40

10−100
10−80
10−60
10−40
10−20

100
1020
1040

d = 9 (` = 79)

0 10 20 30 40 50 60

10−100
10−80
10−60
10−40
10−20

100
1020
1040

d = 10 (` = 143)

0 10 20 30 40 50 60 70

10−100
10−80
10−60
10−40
10−20

100
1020
1040

d = 11 (` = 195)

Figure 5. Truncation errors and remainder bounds computed by Algorithm 10, run with the indicated `,
for random solutions of annihilating operators of lattice Green functions of d-dimensional face-centered cubic
lattices (see Section 9.3).

The textual representation of the operator for d= 11, for instance, takes about 8 megabytes.
The value at z = 1 of the lattice Green function gives access to the return probability of the

random walk on the lattice. To the best of our knowledge, going through the di�erential equation
is the only known way of computing that probability to high precision in good complexity.

All these operators have regular singularities with integer exponents at the origin. For example,
the monic indicial polynomial for d = 9 is n9 (n ¡ 1)5 (n ¡ 2)3 (n ¡ 3). In each case, we select
small initial values at random and evaluate the logarithmic series solution characterized by these
initial values about halfway from the boundary of its circle of convergence. We run Algorithm 10
with `= bs/2c+2, in accordance with the heuristic suggested on page 14.

It is especially noticeable here that the left endpoint of the upper curve is located signi�cantly
to the right of that of the other curve, even when no part of the curve is clipped out of the plot.
This is because our implementation can return in�nite bounds, and does so at least until it has
passed all initial values.

The fast convergence of the power series as d increases can be explained by the presence of
apparent singularities close to the origin, which leads us to select evaluation points much smaller
than the actual radius of convergence of the solutions. Thus, roughly speaking, a rigorous order-
adaptive Taylor method using our algorithm would perform many more steps to evaluate the lattice
Green function at z=1 for d=9 than for d=4, but sum fewer terms at each step. Although our
bounds tend to in�nity when the magnitude of the evaluation point approaches that of the singular
point of the equation closest to the origin�apparent or not�, we can see that in these examples,

32 Truncation Bounds for Differentially Finite Series

they adapt nicely to the unexpectedly fast convergence, thanks to the use of residuals. Having to
perform many small steps is nevertheless sub-optimal, which raises the question of adapting the
algorithm to handle apparent singularities in a way that allows for larger step sizes.

We can also observe that overestimation becomes signi�cant for the larger of these operators.
Further increasing the tuning parameter ` does not seem to help. Other methods may hence be
needed for the really e�cient numerical solution of equations with coe�cients of very large degree
at comparatively low precision.

It would be hard to draw any conclusion from a detailed analysis of the running time of our
Python implementation. Still, anecdotal data con�rms that the bounds of this paper are usable in
practice as part of symbolic-numeric algorithms. For example, the simple variable-order interval
Taylor method implemented in ore_algebra can compute an enclosure with radius less than 10¡60

of the value at z=1 of the lattice Green function for d=4 in less than a second on a modest laptop.
The computation of the remainder bounds accounts for an estimated 5 to 10% of the total running
time. (Of course, the solver does not compute a complete tail bound at every iteration, but starts
with a heuristic convergence check, and reuses various intermediate results when the rigorous check
does not succeed on the �rst try, as discussed in particular in Remark 13.)

9.4. E�ort-tightness trade-o�. Figure 6 shows the in�uence of the tuning parameter ` of
Algorithm 10 and its importance for obtaining good bounds in relatively hard cases. We consider
the following examples:

(a) The evaluation of arctan(z) close to its circle of convergence for which ` = 3 did not give
satisfactory results on Figure 4.

(b) The operator of the previous subsection for d=6, but taken in the neighborhood of z=1/2
as in Example 1, with initial values u(0) = 1; u0(0) = ��� = u(7)(0)=0. The closest singular
point is at distance about 0.256, and we evaluate the expansion at z=9/70� 0.129.

(c) The operator below, handpicked among examples generated at random (by �rst picking
elements of Z[z]hDzi of balanced orders and degrees with small integer coe�cients, and then

0 100 200 300 400

10−9

10−6

10−3

100

103

arctan(7/8)

` = 1
` = 2
` = 4
` = 8
` = 16
` = 32
` = 64

0 100 200 300 400 500 600

10−90

10−60

10−30

100

1030
sol. u of FCC6 around 1/2, u(9/70)

` = 1
` = 2
` = 4
` = 8

0 40 80 120 160

10−30

10−20

10−10

100

1010

1020
example (c) @ z = 4

` = 1
` = 2
` = 4
` = 8

0 100 200 300 400 500 600

10−30

10−20

10−10

100

1010

1020
example (d) @ z = 39/10

` = 4
` = 8
` = 16

Figure 6. Remainder bounds computed by Algorithm 10 for various values of the tuning parameter ` (see
Section 9.4). The bottommost curve (in black) is the actual truncation error, the remaining curves from top
to bottom correspond to increasing values of `.

Marc Mezzarobba 33

point � 0.95 4.75 9.5

truncation order n 50 100 50 100 50 100

NumGfun 6.2 � 10¡30 2.5 � 10¡78 5.5 � 105 1.9 � 10¡8 1.1 � 1022 2.5 � 1022
vdH2001 2.7 � 10¡35 7.5 � 10¡82 6.1 � 100 1.3 � 10¡11 5.5 � 1023 4.9 � 1023
vdH2003 4.7 � 10¡37 3.4 � 10¡83 1.1 � 10¡1 5.5 � 10¡13 4.1 � 1023 4.1 � 1023
ACETAF 3.2 � 10¡48 6.2 � 10¡77 2.0 � 10¡5 1.3 � 10¡28 4.2 � 104 1.2 � 103

ore_algebra 8.6 � 10¡50 5.2 � 10¡101 2.9 � 10¡14 1.4 � 10¡30 7.2 � 103 2.7 � 102

reference 6.9 � 10¡50 4.1 � 10¡101 5.0 � 10¡15 2.7 � 10¡31 3.6 � 100 2.2 � 10¡1

Table 1. Bounds on the tails jun:(�)j of the series de�ned by (42) computed by various methods (see
Section 9.5). All values have been rounded upwards to two signi�cant digits.

changing z to 5 i+7+ z, whence the special distribution of coe�cient sizes):

(¡9 z4+(¡179 i¡ 254)z3+(¡3790 i¡ 1356)z2+(¡22352 i+ 6164)z ¡31888 i+ 38654)) Dz
3

+(29 i z4+(815 i¡ 582) z3+(4208 i¡ 12268) z2+(¡ 21341 i¡ 71530)z¡ 127224 i¡ 98798) Dz
2

+((i+1) z4+(41 i+7) z3+(470 i¡ 189) z2+(1981 i¡ 2407) z+ 1555 i¡ 7918) Dz

+((¡4 i+1)z4+(¡96 i+107)z3+(¡256 i+ 1865)z2+(4867 i+ 9840) z+ 20950 i+ 11833) :

The evaluation point is a simple rational halfway from the circle of convergence, and we
select the initial values at random.

(d) An operator of order 7 and degree 8 of the form

((20 i¡1) z8+ ���+178371756 i+577700775)Dz
7+ ���+((1¡ i) z8+ ��� ¡ 42079467 i¡23600391)

obtained in a similar way, also evaluated at a point halfway from the circle of convergence
and with random initial values.

We can observe that going from `=1 to `=2 already brings very signi�cant improvements, and
that larger values of ` are useful for nontrivial examples. Clearly, the heuristic `� s/2 suggested
earlier is but a crude rule of thumb. An implementation that adaptively increases ` starting from
`=2 based on a heuristic measure of the tightness of the bounds is likely to perform better. These
conclusions are consistent with experiments on various other examples. We also see again that
operators with a few tens of monomials and large (but not huge) coe�cients can be challenging in
terms of overestimation, at least at low precision.

A second parameter involved in the trade-o� between speed and accuracy is the optional step of
Algorithm 22, whose e�ect already was illustrated on Figure 2. This optional step can bring huge
bene�ts on some inputs but makes no di�erence in the most common cases, while being relatively
expensive. Hence, it makes sense to only run it when the previous step does not su�ce.

As regards the other algorithmic variants mentioned in this article, only the more accurate of
the options is typically relevant for large operators. In particular, trying to save time by doing with
a single shared lower bound on the singularities, as suggested in Remark 11, only makes sense for
very simple operators.

9.5. Comparison with existing software. A systematic comparison with the related methods
discussed in Section 2 would be meaningless, as they were designed for di�erent goals, widely
di�er in scope, often (even more than ours) involve tuning parameters with a crucial in�uence on
the quality of the results, and usually are not implemented. Nevertheless, it makes sense to check
that, in simple cases where several methods apply, our bounds are no worse than what could be
computed by other approaches.

We limit ourselves to a very simple example borrowed from Neher [37, Ex. 3], namely the
problem of bounding the remainders of the Taylor expansion of u(z)=cos(z)/(z2+101), solution of¡

(z2+ 101)Dz
2+4 zDz+(z2+ 103)

�
�u=0; u(0)= 1/101; u0(0)=0: (42)

Table 1 lists bounds on un:(�) for several values of � and n computed by the following methods:

NumGfun. The author's own Maple package NumGfun [27], whose limitations prompted the
present work. We use the function bound_diffeq_tail() with no particular options or
con�guration, and substitute the appropriate � and n in the result.

34 Truncation Bounds for Differentially Finite Series

vdH2001. A method described by van der Hoeven [43, Sec. 2], here applied manually with
the help of non-rigorous �oating-point computations. While the description leaves out a
number of algorithmic details related to the computation of bounds on rational functions,
the optimal choice of parameters (�=101¡1/2, M0=103/101, M1=0) is unambiguous here
thanks to the special shape of our example. Like the �a priori� bounds of Section 8.2 and for
similar reasons, this method is highly sensitive to the choice of the remaining parameter �,
which we select by numerical optimization to minimize the bound. The six test cases of
Table 1 respectively use �=0.139, �=0.121, �=0.139, �=0.121, �=0.105, and �=0.105.

vdH2003. A related method also suggested by van der Hoeven [44, Sec. 3.5], no longer
involving �. Again, it is possible for our particular example to choose optimal parameter
values � = 101¡1/2, M = 103 / 101, C = 1 / 101. We assume that the remainder of the
majorant series obtained as output can be bounded as tightly as needed.

ACETAF. We also list bounds obtained by Neher [37] using version 2.71 of ACETAF [12].
ACETAF is mainly designed for computing bounds on the coe�cients and remainders of
series coe�cients of linear analytic ODEs before applying a majorization theorem. There-
fore, unlike the above methods, it does not start from the equation (42) but from the closed-
form expression of u(z). Both the quality of the bounds it returns and the running time
vary widely depending on the values of several tuning parameters. We only list the best of
the three bounds reported in Neher's article for each instance.

ore_________algebra. Finally, we run the implementation in ore_algebra of our algorithm, with `=2,
using the simpli�ed method of Remark 11 for bounding the denominator.

Only ACETAF approaches the accuracy of the bounds of the present paper in some cases. In
addition, the alternative methods considered here tend to degrade rapidly, in quality, running time,
or both, as the size of the operator increases, so that the gap would likely be wider for realistic
problems.

Acknowledgments

This work was supported in part by ANR grant ANR-14-CE25-0018-01 (FastRelax).

Bibliography

[1] R. Barrio, M. Rodríguez, A. Abad, and F. Blesa. Breaking the limits: the Taylor series method. Applied
Mathematics and Computation, 217, 2011.

[2] Alin Bostan and Éric Schost. Polynomial evaluation and interpolation on special sets of points. Journal of
Complexity, 21(4):420�446, 2005.

[3] Richard P. Brent and Paul Zimmermann. Modern Computer Arithmetic. Cambridge University Press, 2010.
[4] David Broadhurst. Bessel moments, random walks and Calabi-Yau equations. 2009.
[5] Augustin Cauchy. Mémoire sur l'emploi du nouveau calcul, appelé calcul des limites, dans l'intégration d'un

système d'équations di�érentielles. Comptes-rendus de l'Académie des Sciences, 15:14, jul 1842. Reproduced
in [6], �169, p. 5-17.

[6] Augustin Louis Cauchy. Oeuvres complètes d'Augustin Cauchy, Ière série, tome VII . Gauthier-Villars, 1892.
[7] David V. Chudnovsky and Gregory V. Chudnovsky. Computer algebra in the service of mathematical physics

and number theory. In [8], pages 109�232.
[8] David V. Chudnovsky and Richard D. Jenks, editors. Computers in Mathematics, volume 125 of Lecture Notes

in Pure and Applied Mathematics. Dekker, 1990. Talks from the International Conference on Computers and
Mathematics, Stanford University, 1986.

[9] J. H. Davenport and M. Mignotte. On �nding the largest root of a polynomial. Modélisation Mathématique
et Analyse Numérique, 24:693�696, 1990.

[10] Digital library of mathematical functions. 2010. Companion to the NIST Handbook of Mathematical Func-
tions [38].

[11] Zilin Du and Chee Yap. Uniform complexity of approximating hypergeometric functions with absolute error.
In Sung-Il Pae and Hyungju Park, editors, Proceedings of the 7th Asian Symposium on Computer Mathematics
(ASCM 2005), pages 246�249. Korea Institute for Advanced Study, 2005.

[12] Ingo Eble and Markus Neher. ACETAF: A software package for computing validated bounds for Taylor
coe�cients of analytic functions. ACM Transactions on Mathematical Software, 29(3):263�286, 2003.

[13] Ferdinand Georg Frobenius. Über die Integration der linearen Di�erentialgleichungen durch Reihen. Journal
für die reine und angewandte Mathematik, 76:214�235, 1873.

[14] Jürgen Gerhard. Modular Algorithms in Symbolic Summation and Symbolic Integration, volume 3218 of
Lecture Notes in Computer Science. Springer, 2004.

[15] ThomasGrégoire. Certi�ed polynomial approximations forD-�nite functions. Rapport de stage, École normale
supérieure de Lyon, aug 2012.

Marc Mezzarobba 35

[16] Anthony J. Guttmann. Lattice Green functions and Calabi-Yau di�erential equations. Journal of Physics A:
Mathematical and Theoretical, 42(23):232001, 2009.

[17] S. Hassani, Ch. Koutschan, J.-M. Maillard, and N. Zenine. Lattice Green functions: the d-dimensional face-
centered cubic lattice, d=8; 9;10; 11;12. Journal of Physics A: Mathematical and Theoretical, 49(16), 2016.

[18] Lothar He�ter. Einleitung in die Theorie der linearen Di�erentialgleichungen. Teubner, Leipzig, 1894.
[19] Peter Henrici. Applied and Computational Complex Analysis, volume II. Wiley-Interscience, 1977.
[20] Peter Henrici. Applied and Computational Complex Analysis, volume III. Wiley-Interscience, 1986.
[21] Einar Hille. Ordinary di�erential equations in the complex domain. Wiley, 1976. Dover reprint, 1997.
[22] Fredrik Johansson. Computing hypergeometric functions rigorously. Technical Report 1606.06977, arXiv, jun

2016.
[23] Fredrik Johansson. Arb: e�cient arbitrary-precision midpoint-radius interval arithmetic. IEEE Transactions

on Computers, 66(8):1281�1292, 2017.
[24] Manuel Kauers, Maximilian Jaroschek, and Fredrik Johansson. Ore polynomials in Sage. In Jaime Gutierrez,

Josef Schicho, and Martin Weimann, editors, Computer Algebra and Polynomials, pages 105�125. Springer,
2015.

[25] Manuel Kauers and Peter Paule. The Concrete Tetrahedron: Symbolic Sums, Recurrence Equations, Gener-
ating Functions, Asymptotic Estimates. Springer, 2011.

[26] ChristophKoutschan. Lattice Green's functions of the higher-dimensional face-centered cubic lattices. Journal
of Physics A: Mathematical and Theoretical, 46(12):125005, 2013.

[27] Marc Mezzarobba. NumGfun: a package for numerical and analytic computation with D-�nite functions. In
[47], pages 139�146.

[28] Marc Mezzarobba. Autour de l'évaluation numérique des fonctions D-�nies. Thèse de doctorat, École poly-
technique, nov 2011.

[29] Marc Mezzarobba. Rigorous multiple-precision evaluation of D-Finite functions in SageMath. Technical
Report 1607.01967, arXiv, 2016. Extended abstract of a talk at the 5th International Congress on Math-
ematical Software.

[30] Marc Mezzarobba and Bruno Salvy. E�ective bounds for P-recursive sequences. Journal of Symbolic Com-
putation, 45(10):1075�1096, 2010.

[31] Ramon E.Moore. Interval arithmetic and automatic error analysis in digital computing. PhD thesis, Stanford
University, 1962. Published as Applied Mathematics and Statistics Laboratories Technical Report No. 25.

[32] MPFR Team. The MPFR library: algorithms and proofs. 2001. Available in the MPFR source tree.
[33] N. S. Nedialkov, K. R. Jackson, and G. F. Corliss. Validated solutions of initial value problems for ordinary

di�erential equations. Applied Mathematics and Computation, 105(1):21�68, 1999.
[34] M. Neher, K. R. Jackson, and N. S. Nedialkov. On Taylor model based integration of ODEs. SIAM Journal

on Numerical Analysis, 45(1):236�262, 2007.
[35] Markus Neher. An enclosure method for the solution of linear ODEs with polynomial coe�cients. Numerical

Functional Analysis and Optimization, 20:779�803, 1999.
[36] Markus Neher. Geometric series bounds for the local errors of Taylor methods for linear n-th-order ODEs.

In Götz Alefeld, Jiri Rohn, Siegfried M. Rump, and Tetsuro Yamamoto, editors, Symbolic Algebraic Methods
and Veri�cation Methods, pages 183�193. Springer, 2001.

[37] Markus Neher. Improved validated bounds for Taylor coe�cients and for Taylor remainder series. Journal of
Computational and Applied Mathematics, 152:393�404, 2003.

[38] F. W. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark, editors. NIST Handbook of Mathematical
Functions. Cambridge University Press, 2010.

[39] Edgar Girard Croker Poole. Introduction to the theory of linear di�erential equations. Clarendon Press, New
York, 1936.

[40] Robert Rihm. Interval methods for initial value problems in ODEs. In Jürgen Herzberger, editor, Topics in
Validated Computations: Proceedings of the IMACS-GAMM International Workshop on Validated Computa-
tions, University of Oldenburg, Elsevier Studies in Computational Mathematics, pages 173�207. Elsevier, 1994.

[41] Richard P. Stanley. Enumerative combinatorics, volume 2. Cambridge University Press, 1999.
[42] Joris van der Hoeven. Fast evaluation of holonomic functions. Theoretical Computer Science, 210(1):199�216,

1999.
[43] Joris van der Hoeven. Fast evaluation of holonomic functions near and in regular singularities. Journal of

Symbolic Computation, 31(6):717�743, 2001.
[44] Joris van der Hoeven. Majorants for formal power series. Technical Report 2003-15, Université Paris-Sud,

Orsay, France, 2003.
[45] Joris van der Hoeven. E�cient accelero-summation of holonomic functions. Journal of Symbolic Computation,

42(4):389�428, 2007.
[46] P. G.Warne, D. A. P. Warne, J. S. Sochacki, G. E. Parker, and D. C. Carothers. Explicit a-priori error bounds

and adaptive error control for approximation of nonlinear initial value di�erential systems. Computers and
Mathematics with Applications, 52(12):1695�1710, 2006.

[47] Stephen M. Watt, editor. ISSAC '10: Proceedings of the 2010 International Symposium on Symbolic and
Algebraic Computation. ACM, 2010.

[48] N. Zenine, S. Hassani, and J.-M. Maillard. Lattice Green functions: the seven-dimensional face-centred cubic
lattice. Journal of Physics A: Mathematical and Theoretical, 48(3), 2015.

36 Truncation Bounds for Differentially Finite Series

	1. Introduction
	2. Related work
	3. Notation and reminders
	4. A sketch of the method
	5. Majorant equations: the general case
	6. The main algorithm
	7. Bounds on rational sequences
	8. Numerical bounds
	9. Implementation and examples
	Acknowledgments
	Bibliography

