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The Airy Function Ai(x)

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

–8 –6 –4 –2 2 4 6 8
x

Ai′′(x)=xAi(x) Ai(0)=
1

32/3Γ(2/3)
Ai′(0)=− 1

31/3Γ(1/3)

Marc Mezzarobba (Inria) Evaluation of Ai(x) with Reduced Cancellation



Multiple-Precision Evaluation for x> 0

Standard Approach

“Small” x:

Taylor Series at 0

• catastrophic cancellation

for moderately large x

• need pwork≫ pres

“Large” x:

Asymptotic Expansion at ∞

This talk

New evaluation algorithm for “small” x with pwork≈ pres

Complete error analysis
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Catastrophic Cancellation
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Another Example
The Error Function
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catastrophic cancellation
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But...

[Abramowitz & Stegun 1972, p. 297]

Algorithm

1. Compute
2

π
√

∑

n=0

∞
2n x2n+1

1 · 3� (2n+1)
positive terms, no cancellation

2. Compute exp (x2)

3. Divide
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Where

does this formula

come from?
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The Gawronski-Müller-Reinhard Method

Or: How Complex Analysis “explains” the previous trick

Idea: Find F and G such that

1. y(x)=
G(x)

F (x)

2. F and G computable with little cancellation

W. Gawronski, J. Müller, M. Reinhard. SIAM J. Num. An., 2007

M. Reinhard. Phd thesis, Universität Trier, 2008
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Asymptotics

Ai(z)∼
exp

(
−2

3
z3/2

)

2 π
√

z1/4

as z→∞
in any sector

{z ∈C|−ϕ< arg z < ϕ}
with ϕ> 0
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Asymptotics

|Ai(r eiθ)| ≈ exp (h(θ) rρ)

for large r

Ai(z)∼
exp

(
−2

3
z3/2

)

2 π
√

z1/4

Order ρ=3/2

Indicator h(θ)=−2
3
cos

3 θ
2
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Lost in Cancellation

ill-conditioned

well-conditioned

lost digits≈ log
(
max
n

|yn (r eiθ)n|
)
− log |y(r eiθ)|≈ rρ (maxh−h(θ))
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The GMR Method

{
|F (z)| ≈ exp (hF(θ) r

ρ)
|G(z)| ≈ exp (hG(θ) r

ρ)
⇒

∣∣∣∣
G(z)

F (z)

∣∣∣∣≈ exp [(hG(θ)−hF(θ))
�

hG/F(θ)

rρ]

Idea (refined): look for

• an auxiliary series F ,

• a modified series G= yF ,

both of order ρ,

such that hF and hG ≈ their max for θ=0
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Indicators

Ai(x) Ai(j−1x) Ai(j x)

F (x)=Ai(j x)Ai(j−1 x) G(x)=Ai(x)Ai(j x)Ai(j−1x)
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How do we

evaluate

the auxiliary series?
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Computer Algebra to the Rescue

A function y is D-finite (holonomic) when it satisfies a linear ODE with
polynomial coefficients.

Examples: Ai(x), exp (x), erf(x)
 Ai′′(x)= xAi(x)

If f(x), g(x) are D-finite, then:

• f(x)+ g(x) and f(x) · g(x) too
F (x)=Ai(j x) ·Ai(j−1 x) F ′′′(x)= 4xF ′(x)+ 2F (x)

• The Taylor coefficients of f(x) obey a linear recurrence relation with
polynomial coefficients

F (x)=
∑

n=0

∞
Fnx

n Fn+3=
2 (2n+1)

(n+1) (n+2) (n+3)
Fn
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The Auxiliary Series F (x)

D-Finiteness

Fn+3=
2 (2n+1)

(n+1) (n+2) (n+3)
Fn

F0=
1

34/3Γ
(

2

3

)
2 F1=

1

2 3
√

π
F2=

1

32/3Γ
(

1

3

)
2

• Two-term recurrence ⇒ Easy to evaluate

• Obviously Fn> 0 ⇒ Minimal cancellation
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The Modified Series G(x)

G(x)=Ai(x)F (x)=
∑

n=0

∞
Gnx

3n

D-Finiteness

Gn+2=
10 (n+1)2Gn+1−Gn

(n+1) (n+2) (3n+4) (3n+5)

G0=
1

9Γ
(

2

3

)
3 G1=

1

18Γ
(

2

3

)
3 −

1

3Γ
(

1

3

)
3

G(x)= 0.44749 · 10−1+ 0.50371 · 10−2 x3+ .14053 · 10−3x6

+ .17388 10−5x9+ .12091 · 10−7 x12+ .53787 · 10−10x15+�

Observe that Gn > 0 (proof?)
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Bad News

The recursive computation of Gn is

unstable

(Gn is a minimal solution of the recurrence)

The computation of the sum
∑

n=0

∞
Gnx

n is stable (no cancellation)

Marc Mezzarobba (Inria) Evaluation of Ai(x) with Reduced Cancellation



All Is Not Lost

Miller’s backward recurrence method allows one to compute minimal
solutions in a numerically stable way

Final Algorithm

1. Compute error bounds, choose working precision (how?)

2. Compute F (x) by direct recurrence

3. Compute G(x) using Miller’s method

4. Divide

Numerically stable in practice (proof?)
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I didn’t actually

prove

anything
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Making the Analysis Rigorous

• Prove that (Gn) is a minimal solution

[⇒ Miller’s method works]

• Prove that Gn> 0

[⇒ no cancellation] Main issue:

need bounds on Gn

• Bound the tails of the series F and G

• Bound the roundoff errors in
∑

Fnx
n

• Bound the method error of Miller’s algorithm

• Bound additional roundoff errors due to Miller’s method [M&vdS 1976]

R.M.M. Matthiej & A. van der Sluis, Numerische Mathematik , 1976
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Controlling Gn

Main Technical Lemma

Gn∼ γn=
1

4 3
√

π 9nn!2
with

∣∣∣∣
Gn

γn
− 1

∣∣∣∣6 2.4n−1/4 for all n> 1

Corollary: Gn> 0 (for large n, then for all n)

Idea of the proof

• Gn=
1

2π i

∮
G(z)

z3n+1 dz

• saddle-point method

• Ai(z)∼ e
−2

3
z3/2

2 π
√

z1/4
+ error bound
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Conclusion

Summary

• New well-conditioned formula for Ai(x),

obtained by an extension of the GMR method

• Rigorous error analysis on this example

• Ready-to-use multiple-precision algorithm for Ai(x)

implementation & suppl. material at http://hal.inria.fr/hal-00767085

Next question: How much of this is specific to Ai(x)?

• Entire function

• Ability to find auxiliary series

• D-finiteness [constraints on the order of the recurrences?]

• Asymptotic estimate with error bound
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