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ore_algebra

H mkauers / ore_algebra
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ore_algebra: An Implementation of Ore Polynomials

. Features
K(z)(D.) = {skew polynomials
in D, over K(Z) e Basic arithmetic (diff, shift, qdiff,
subjectto D,z=2zD,+1} qshift, custom)
~ { differential operators} ° Gcrdf lclm, D-finite closure (incl.
multivariate)

o Creative telescoping
e Polynomial, rational,

gen. series solutions

Example e Numerical connection (diff.)
=> THIS TALK
" / _
y"(2) +2y'(2) +y(2) =0 e Desingularization
1} o Guessing

(D24-zD,+1)-y=0 g
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Analytic Continuation
L=a.(z) D]+ -+ ai(z) D+ ao(z)
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Analytic Continuation
L=a,(z) DI+ +ai(z) D+ ao(z)

X
X
[y(0),y'(0), -]
o
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y=ogfo+ -+ oty
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Regular Singular Points

Theorem [Fuchs, 1866]

Assume that 0 is a regular singular point. Then, for some neighborhood D
of 0, there exists a basis of solutions defined on D\{0} of the form

2 (yo(z) +y1(z) log z+ -+ + y¢(z) log* 2), AeQ, y; analytic on D.

k \
“Canonical” basis: |:ZV loi' £ ] , vrootof mult. >k of indicial polynomial
/ y(z)~z73logz / y(z) ~zHV? X y(z)~etl/z



Initial Conditions at Regular Singular Points
L=zD2+D.+z (Jo,Yo)
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Initial Conditions at Regular Singular Points
£:ZD§+D2+Z (IO)YO)

fo(z) =1-log(z) +0-1+O(z)
f1(z) =0-log(z) +1-14+ O(2)

y:ocolog(z)—i—ocl—i—f)(z) =y=ogfo+ o1 f1




Transition Matrices
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Transition Matrices

go(z)
g91(z)

y=PRogo+ P19+
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“Large” Computations

Face-centered cubic lattice in dimension 11

[Hassani, Koutschan, Maillard, Zenine 2016]

order 22 int. size ~1900 bits singular both } AP
degree 300 accuracy ~340 bits time 8 hours %

L=Dyx(x—1)(x—¢)Dx+x
After A. Bostan, based on an idea of M. Kontsevich, via D. van Straten

order 2 int. size ~19000 bits singular both
degree 3 accuracy ~2.3 M bits time a few days

Timings on a single core.
Many optimization opportunities remaining!



Code Generation for Special Functions

XY XY+ (x*2=1)Y; =0
Y1(X)N_%+m+...

o5

7T
asx — 0
Specification:
l implem(x) — f(x)

f(x)

[Lauter-M.]

double BesselY1 (double x) {
// generated code
}

Leforallx€[a,b]N double

| Working prototype (“Sagenstein”, 2017)

https://scm.gforge.inria.fr/anonscm/git/metalibm/sagenstein.git

]X[ Project stalled due to lack of time : - (




Summary

Numerical solution of linear ODEs with polynomial coefficients
e full support for regular singular points (incl. algebraic, resonant...)
e arbitrary precision
e rigorous error bounds

Code available at

https://github.com/mkauers/ore_algebra/

Perspectives

Features: irregular singular connection, automatic singularity
analysis, D-finite functions as objects...

Speed: automatic path optimization, better handling of apparent
singularities, some lower-level code...

Bug reports, feature requests, examples welcome!



A Taylor Series Method

; 5\ \]\ arctan(% (1 —l—i)) ?

Joer-~ o5 (T+1

/’/})r'é‘\ f\4( \)

e //l\ AN ZZ\ ‘]
! A ,/Z\ Vo y(z) |_[1 057..+022... 7 y(0)
1 . ! i V(z) |70 0.72..-0.20... || y'(0)
\\ B \__,/ g ylze) | _[1 039..40.24... ]| y(z1)
S g Y'(z2) | | 0 0.57...—0.29... || y'(z1)

Locally, the solutions are given by convergent power series
Sum the series numerically to get “initial values” at a new point

Large steps (o radius of convergence)

Extends to the regular singular case



Recurrences

The Taylor coefficients of a D-finite function y(z Z Ynz"
obey a linear recurrence relation with polynomial coeff1c1er1ts:

bs(N) Ynts + -+ + b1(n) Yng1+ bo(n) yn =0.

(And conversely, for D-finite formal power series.)

Easy to generate

Also leads to fast algorithms

[Schroeppel 1972; Brent 1976; Chudnovsky & Chudnovsky 1988;

van der Hoeven 1999, 2001; M. 2010, 2012; Johansson 2014]
Best complexity:

[ |
time O(M(nlog®n)), space O(n) ' || '

[ J [ J [ J [ J
for fixedzand e=2"" OO




Recurrences

LS i
The coefficients of a D-finite function Z Z Yy k2’ log(2)*

k!
VEA+Z k=0
obey a linear recurrence relation with polynomial coefficients:

[bs(v+Sk)-S3+ - +b1(v+ Sk) Sv +bo(v + Sk)] - (Yv,x) =0.

Easy to generate
Also leads to fast algorithms

[Schroeppel 1972; Brent 1976; Chudnovsky & Chudnovsky 1988;
van der Hoeven 1999, 2001; M. 2010, 2012; Johansson 2014]

Best complexity: | ]

time O(M(nlog®n)), space O(n) Il ¥ ll Il - ll

for fixedzand e=2"" OO




Error Bounds

Round-off errors

Real & complex arithmetic based on Arb

[Johansson 2012-]
({Real, Complex}BallField in Sage)

More generally: takes care of error propagation
Arb supports truncated power series (cf. autodiff)

Manual error analysis still useful when intervals blow up

Truncation Errors

o) N-1 o)

E Uzt = g unz™+ E Un 2™

n=0 n=0 n=N
N————’

known [1<?
Majorant series

”Adaptive” bounds using residuals [M. 2019]



Asymptotics of Apéry Numbers

oma2 2 =~ an k(_)mEanng
B QO e (5 S )

m=1 m m

(1,5,73, 1445, 33001...) (0,6,351/4,62531/36, ...)

The OGS a(z) and b(z) are solutions of L =z? (z? — 34z 4 1) D% + ---
Singular points: 0, a=(y2+1)*~33.9, o '=(v2—-1)*~0.0294

Prove: Ap, by = o) b — ((3) an = o)
Local expansion at a~!: a(z) =cofo(z) + €1 f1(z) + ca fa(z) 4+ c3 f3(2)
where fola 1 4+1) =1+ 0(t%) fa(a ™t +1) =t +O(t3)
fila™t 1) =T+ O(t?) fala 1) =t2+ O(t?)
Singularity analysis: (c1#£0)

a(z)~epv/z—a ! = an~ ¢y [z" szFINQC11 atn /2

E
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